<u>Spectral and Polarization Signatures</u> <u>of Relativistic Shocks in Blazars</u>

Markus Böttcher North-West University Potchefstroom South Africa

<u>Collaborators:</u> Haocheng Zhang (UNM / LANL), Chris Diltz (Ohio University), Matthew Baring (Rice Univ.), Errol J. Summerlin (GSFC)

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT

Relativistic Shocks in Jets

- Internal Shocks: Most likely mildly relativistic, oblique.
- In most works: Simple power-law or log-parabola electron spectra (from Fermi I / II acceleration) assumed with spectral index (~ 2) put in "by hand".

Marscher & Gear (1985), Spada et al.(2001), Sokolov et al. (2004), Mimica et al. (2004), Sokolov & Marscher (2005), Graff et al. (2008), Böttcher & Dermer (2010), Joshi & Böttcher (2011), Chen et al. (2011, 2012)

Diffusive Shock Acceleration (DSA)

(Summerlin & & Baring 2012)

- Gyration in B-fields and diffusive transport modeled by a Monte Carlo technique.
- Shock crossings produce net energy gains (evident in the increase of gyroradii) according to principle of first-order Fermi mechanism.
- Pitch-angle diffusion parameterized through a mean-free-path (λ_{pas}) parameter η (p):

 $(\alpha \geq 1)$

 $\lambda_{pas} = \eta(p)^* r_g \sim p^{\alpha}$

Shock Acceleration Injection Efficiencies

Summerlin & Baring (ApJ, 2012)

 Non-thermal particle spectral index and thermal-to-nonthermal normalization are strongly dependent on η and B-field obliquity!

Acceleration Indices: Oblique Shocks

(Summerlin & Baring 2012)

 Non-thermal spectra as hard as n(p) ~ p⁻¹ achievable for moderately sub-luminal shocks.

Coupling with Radiative Energy Losses

- High-energy cutoff from balance between acceleration rate (DSA) and radiative (synchrotron + SSC + EC) cooling rate
- Cooling break from balance between radiative cooling and escape time scales.

Constraints from Blazar SEDs

If Synchrotron cooling dominates:

$$\gamma_{max} \sim B^{-1/2} \eta (\gamma_{max})^{-1/2}$$

 $\Rightarrow v_{sy} \sim \eta(\gamma_{max})^{-1}$ (independent of B-field!)

- \Rightarrow Need large $\eta(\gamma_{max})$ to obtain synchrotron peak in optical/UV/X-rays
- \Rightarrow But: Need moderate $\eta(\gamma \sim 1)$ for efficient injection of particles into the non-thermal accelerations scheme
- ⇒Need strongly energy dependent pitch-angle scattering m.f.p.

BL Lacertae

AO 0235+164

Implications for Shock-Induced Turbulence

Gyro-resonance condition: $\lambda_{res} \sim p$

=> Higher-energy particles interact with longer-wavelength turbulence

Turbulence level decreasing with increasing distance from the shock \Rightarrow High-energy (large r_g) particles "see" reduced turbulence \Rightarrow Large λ_{pas}

Tracing Synchrotron Polarization in the Internal Shock Model

Light Travel Time Effects

Shock positions at equal photon-arrival times at the observer

Simultaneous optical + γ -ray flare, correlated with a 180° polarizationangle rotation.

Application to 3C279

Simultaneous fit to SEDs, light curves, polarization-degree and polarization-angle swing

vF $_{\rm v}$ (erg cm $^{-2}$ s $^{-1}$)

11

10

9

Flux

3-day Bin Data

Application to 3C279

Requires particle acceleration and reduction of magnetic field, as expected in magnetic reconnection!

The Lepto-Hadronic Version

- Lepto-hadronic (p-synchrotron dominated) 3D time- and polarization-dependent internal shock model (Zhang, Diltz & Böttcher 2016, in preparation)
- Model setup as for leptonic (3DPol) model, but include injection of ultrarelativistic protons
- Electron + proton evolution with locally isotropic Fokker-Planck equation
- Fully time- and polarization-dependent ray tracing

<u>3D Lepto-Hadronic Internal</u> <u>Shock model</u>

Example case: Magnetic energy dissipation (reducing B-field, additional e and p injection)

Snap-Shot SEDs

Pol. Deg. vs. Photon Energy

<u>3D Lepto-Hadronic Internal</u> <u>Shock model</u>

35 Radio **MW Light Curves** Pol. vs. time 30 Optical uminosity (10⁴⁶ erg s⁻¹) c UV 25 (%) 01 15 Radio Optical⁻ High-energy (p-sy) UV 10 keV polarization signatures MeV - GeV much more stable than low-energy (e-sy) Luminosity (10⁴⁸ erg s⁻¹) signatures, due to 240 Radio Optical slower p cooling: ____180[|] _____4 UV keV MeV 120 No PA swings in - GeV X-rays – γ -rays! 60 5 0 2 3 3 0 Time (d) Time (d) (Zhang et al. 2016, in prep.)

- 1. Coupled MC Simulations of Diffusive Shock Acceleration and radiation transport reveal strongly energy-dependent mean-free-path to pitch-angle scattering.
- 2. Polarization-angle swings correlated with MW flares are possible with a straight jet, pervaded by a helical B field. Fit to 3C279 event suggests magnetic energy dissipation as driver of flaring activity.
- 3. 3D time- and polarization-dependent radiation transfer simulations for a proton-synchrotron dominated lepto-hadronic model: High-energy (X-ray/gamma-ray) polarization signatures are expected to be less variable than low-energy (e-synchrotron) ones. PA swings in X-rays / γ -rays are unlikely if high-energy emission has hadronic origin.

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT <u>Astronomers Say the</u> <u>Darnest Things</u>

Dear Markus,

... We know that the BLR in radio quiet AGNs are observed to show clumsiness and substructures...

E-mail from a colleague [name undisclosed]

Oblique Relativistic MHD Shock Geometry

Particle retention in the shock layer is extremely sensitive to the magnetic field angle w.r.t. the shock normal in relativistic shocks.

Normal Incidence Frame (NIF)

de Hoffmann-Teller frame (HT)

Distinguishing Diagnostic: Variability

In homogeneous, single-zone (spherical-cow) models:

• Time-dependent evolution of particle spectra:

• Variations of input parameters to model variability

(e.g., Mastichiadis & Kirk 1997; Li & Kusunose 2000; Böttcher & Chiang 2002; Chen et al. 2011; Diltz & Böttcher 2014; Diltz et al. 2015; ...)

Distinguishing Diagnostic: Variability

3C454.3 Flare of November 2010

3C454.3

Time-dependent leptonic model

Best-fit variation of

- electron injection power
- B-field

Stochastic acceleration timescale

Poor fit to flarestate X-ray spectrum!

3C454.3 Flare of November 2010

<u>Time-dependent</u> <u>lepto-hadronic</u> <u>model</u>

Best-fit variation of

- electron injection power
- B-field
- Stochastic acceleration timescale
- Proton injection spectral index

Both quiescent and flare state well represented!

Neutrino Emission

Most hadronic / lepto-hadronic models of blazars are proton-synchrotron dominated => Very low expected neutrino flux

Normalized Lightcurves (t_{acc} Perturbation) :

Coupling to Realistic MHD Simulations

- Ideal RMHD Simualtions (LA-COMPASS [LANL]) of relativistic shocks
- Jets initially pervaded by purely helical B-fields with magnetization parameter

$$\sigma = \frac{E_{em}}{h} \qquad E_{em} = \frac{E^2 + B^2}{8\pi} \qquad h = \rho c^2 + \frac{\gamma p}{\gamma - 1}$$

- Fixed fraction of liberated energy converted to the injection of power-law non-thermal electrons
- Follow particle evolution, radiation, and time-dependent polarization signatures using 3DPol.

(Zhang et al. 2016)

Simulation Setup

(Zhang et al. 2016)

B-Field Evolution

High / moderate magnetization

- Weak shock
- velocity field strongly disturbed
- B-field restored to its original topology after passage of the shock

B-Field Evolution

(Zhang et al. 2016)

Low magnetization

- Strong shock
- velocity field almost undisturbed
- B-field topology significantly altered after passage of the shock

Polarization Signatures

- PA swings with PD recovering to its preflare level require high / moderate magnetization ($\sigma \ge 1$) otherwise B-field is not restored to its original topology
- Significant flares require strong shocks, i.e., moderate / high shock speed and moderate / low magnetization

Proposed Alternatives

- Helical magnetic fields in a bent jet
- Helical streamlines, guided by a helical magnetic field
- Turbulent Extreme Multi-Zone Model (Marscher 2014)

