The connection between the radio jet and the γ -ray emission in 3C120 and CTA102

Carolina Casadio Max-Planck-Institut für Radioastronomie

J. L. Gómez - Instituto de Astrofísica de Andalucía (CSIC)
S. G. Jorstad, A. P. Marscher - Boston University
P. Grandi - Istituto Nazionade di Astrofisica-IASFBO

+ co-authors:

M. L. Lister, Y. Y. Kovalev, T. Savolainen, A. B. Pushkarev, V. M. Larionov, P. S. Smith, M. A. Gurwell, A. Lähteenmäki, I. Agudo, S. N. Molina, V. Bala, M. Joshi, B. Jaylor, K. E. Williamson, A. A. Arkharov, D, A. Blinov, G. A. Borman, A. Di Paola, T. S. Grishina, V. A. Hagen-Thorn, R. Itoh, E. N. Kopatskaya, E. G. Larionova, L. V. Larionova, D. A. Morozova, E. Rastorgueva-Foi, S. G. Sergeev, M. Tornikoski, I. S. Troitsky, C. Thum, H. Wiesemeyer

Blazars through Sharp Multi-Wavelength Eyes - Málaga (Spain). 30 May – 3 June, 2016.

VLBA-BU-BLAZAR

VLBA at 43 GHz

21 epochs between January 2012 and May 2014.

VLBA-BU-BLAZAR (43 GHz) January 2012 - May 2014

VLBA-BU-BLAZAR (43 GHz) January 2012 - May 2014

γ-ray detections a r e **a l w a y s** associated with the ejection of a new component.

MOJAVE (VLBA - 15 GHz) 46 epochs January 2008 - August 2013

MOJAVE (VLBA - 15 GHz) 46 epochs

January 2008 - August 2013

γ-ray detections a r e **a l w a y s** associated with the ejection of a new component.

However, as seen for component E4, not all ejections lead to enhanced γ -ray emission.

Components show a progressive decrease in apparent velocity in a time span of ~6.4 years, about half of the precessing period of 12.3 yrs estimated by Caproni & Abraham (2004).

Furthermore, components are ejected at different position angles, suggesting that the variation in apparent velocity is due to a change in viewing angle.

	VLBA 15 GHz			
Name	$T_{ m ej}$	μ	$egin{array}{c} eta_{\mathrm{app}} \end{array}$	
	(year)	(mas/yr)		
$\mathbf{E0}$	2007.29 ± 0.06	2.81 ± 0.05	6.21 ± 0.11	
E1	2008.01 ± 0.02	2.76 ± 0.05	6.10 ± 0.11	
$\mathbf{E4}$	2008.82 ± 0.04	2.35 ± 0.05	5.19 ± 0.11	
E5	2009.42 ± 0.02	2.60 ± 0.06	5.75 ± 0.13	
E6	2009.85 ± 0.03	2.56 ± 0.05	5.66 ± 0.11	
$\mathbf{E8}$	2010.45 ± 0.02	2.20 ± 0.03	4.86 ± 0.07	
E9	2011.23 ± 0.04	2.32 ± 0.09	5.12 ± 0.19	
	VLBA 43 GHz			
d11	2013.03 ± 0.03	1.91 ± 0.09	4.22 ± 0.22	
d12	2013.67 ± 0.02	2.1 ± 0.2	4.7 ± 0.3	

Components show a progressive decrease in apparent velocity in a time span of ~6.4 years, about half of the precessing period of 12.3 yrs estimated by Caproni & Abraham (2004).

Furthermore, components are ejected at different position angles, suggesting that the variation in apparent velocity is due to a **change in viewing angle**.

From the observed apparent velocities, and minimizing the required reorientation of the jet, we estimate Γ =6.3, and a change in viewing angle from θ =9.2° (component E0) to θ =3.6°, when component d11 was ejected and a γ -ray emission is detected.

This implies a change in $\delta \sim 6.2$ (E0) to $\delta \sim 10.9$ (d11), leading to enhanced γ -ray emission.

Multi-wavelength observations have established a delay of ~66 days between X-ray dips and the ejection of new superluminal components (Marscher et al. 2002; Chatterjee et al. 2009).

For a mean $v_{app} \sim 2$ mas/yr, this gives a separation between the BH and mm-VLBI core of ~0.24 pc, or ~3.8 pc deprojected with θ =3.6°.

First γ -ray takes place 34 days (~1.9 pc deprojected) before component d11 crosses the core, or about half the BH-core distance.

Second γ -ray takes place 33 days (~2 pc) after component d12 crosses the core.

Hence, **γ-ray detections took place near the core, parsecs away from the BH.**

Estimated size for the BLR is ~0.03 pc (Grier et al. 2013; Kollatschny et al. 2014). This limits the amount of external photons from the BLR, suggesting SSC as the γ -ray emission mechanism, in agreement with other estimates [e.g., Tanaka et al. 2015].

The blazar CTA102

Multi-wavelength monitoring collecting 10 yrs of data

(June 2004 and June 2014)

Three γ -ray flares are observed between 2011 and 2013.

Flares in June 2011 and April 2013 (γ_1 and γ_3) have no counterparts at other wavebands (Orphan flares)

Flare in September 2012 (γ_2) reached a peak of 5.2x10⁻⁶ ph cm⁻² and was accompanied by s⁻¹ simultaneous flares at all the other wavebands.

VLBA-BU-BLAZAR

80 epochs June 2007 - June 2014

Four main superluminal components and two stationary features, in agreement with previous studies (Jorstad et al., 2001,2005; Fromm et al., 2013):

CI at ~ 0.1 mas

EI at ~2 mas

Casadio et al. (2015b)

Progressive increase in δ_{var} with time due to a reorientation of the jet towards the observer.

Component N4 has the largest δ_{var} ever observed in CTAI02, at $\theta_{var}=1.2^{\circ}$.

 a_{\max}^{a} Name $\theta_{\rm var}$ $\Gamma_{\rm var}$ $\delta_{\rm var}$ $\Delta t_{\rm var}$ (°) (year) (mas) 0.70 0.14 14.6 3.9 14.9 22.4 2.5 1.12 0.33 19.6 2.2 26.2 0.28 0.09 26.1 17.3 30.3 1.2 0.20 0.08

Physical Parameters of Moving Jet Features

Progressive increase in δ_{var} with time due to a reorientation of the jet towards the observer.

Component N4 has the largest δ_{var} ever observed in CTA102, at θ_{var} =1.2°. Position angles of model-fit components

Progressive reorientation of the jet is also seen in the mm-wave EVPAs, followed by a faster rotation in mm-VLBI components after the γ -ray flare.

$\triangle t_{\rm var}$ (year)	a_{\max}^{a} (mas)	$\delta_{\rm var}$	$\stackrel{\theta_{\mathrm{var}}}{(^{\circ})} \bigvee$	$\Gamma_{\rm var}$
0.70	0.14	14.6	3.9	14.9
1.12	0.33	22.4	2.5	19.6
0.28	0.09	26.1	2.2	26.2
0.20	0.08	30.3	1.2	17.3
	$ \begin{array}{c} \Delta t_{\rm var} \\ (year) \\ 0.70 \\ 1.12 \\ 0.28 \\ 0.20 \\ \end{array} $	$\begin{array}{c c} \bigtriangleup t_{\rm var} & a_{\rm max}^{\ a} \\ ({\rm year}) & ({\rm mas}) \\ \hline 0.70 & 0.14 \\ 1.12 & 0.33 \\ 0.28 & 0.09 \\ \hline 0.20 & 0.08 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Physical Parameters of Moving Jet Features

Casadio et al. (2015b)

The mm-VLBI core is located at a de-projected distance of ~7 pc from the BH (Fromm et al. 2015).

Main γ -ray flare in 2012.73 occurred 47 to 127 days *after* component N4 crossed the mm-VLBI core in 2012.49±0.11, or at a *de-projected* distance of > 5 pc from the core.

Hence, the γ-ray outburst took place more than 12 pc from the BH.

At this location there should be no contribution of photons from the disk, BLR, or dusty torus, $suggesting SSC as the \gamma-ray$ production mechanism.

- Despite representing very different classes of AGN, the radio galaxy 3C120 and the blazar CTA102 have very similar properties during γ-ray events.
 - **The (MWL) γ-ray flares are associated with the passage of a new superluminal component through the mm-VLBI core.**

But not all ejections of new knots lead to γ-ray events.γ-ray events occurred only when the new components are moving in a
direction closer to our line of sight.(in agreement with MOJAVE's results - Pushkarev's talk)

• We locate the γ -ray dissipation zone a short distance from the mm-VLBI core, but parsecs away from the central black hole and BLR, suggesting SSC as the mechanism for γ -ray production.