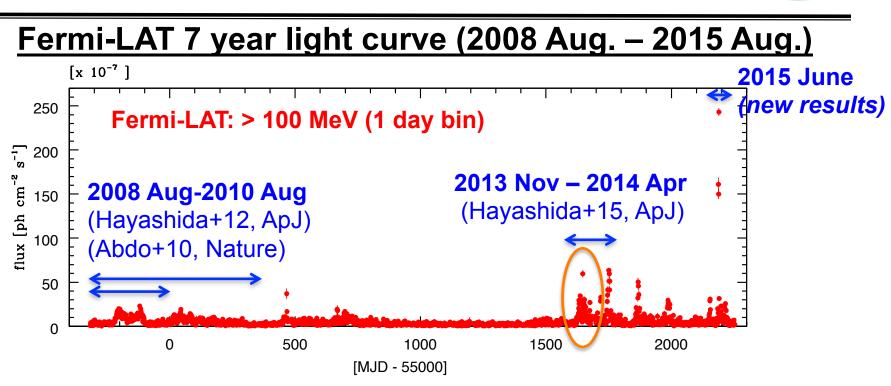
Very fast gamma-ray variability and multi-wavelength view of 3C 279 during outbursts in 2013-2015

> 1. Hayashida, M., et al. 2015, ApJ, 807, 79 2. Asano, K., & Hayashida, M. 2015, ApJL, 808, L18 3. Ackermann, M., et al. (Fermi-LAT Collaboration) 2016, ApJL, in press arXiv:1605.05324 (CA: Hayashida, Madejski, Nalewajko)

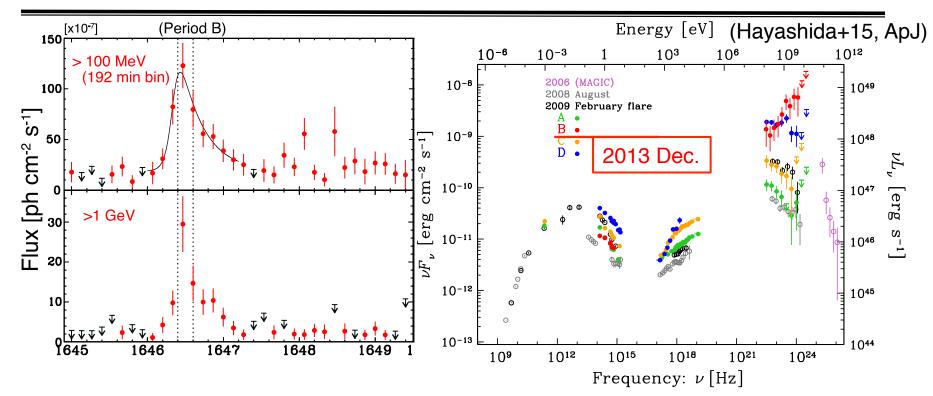
Blazars through Sharp Multi-Wavelength Eyes. Malaga. 31 May 2016

<u>Masaaki Hayashida</u>

(Institute for Cosmic-Ray Research [ICRR], the University of Tokyo) Main collaborators: Greg Madejski, Roger Blandford, Katsuaki Asano, Stefan Larsson (for the Fermi-LAT Collaboration), Krzysztof Nalewajko, and Marek Sikora



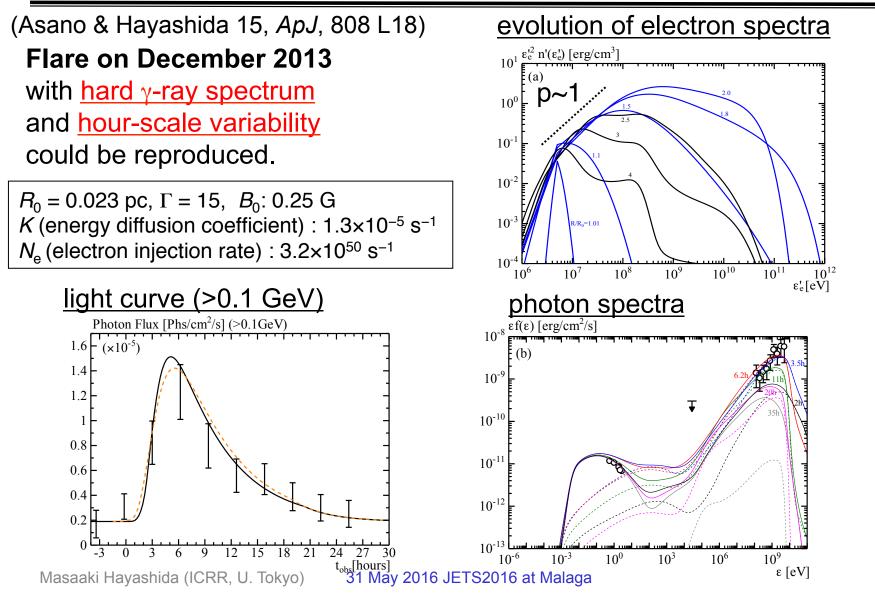
- 1. Gamma-ray and multi-and observations of 3C 279
 - 1. 2013-2014 (briefly)
 - Flare in December 2013, 2nd order Fermi acceleration model
 - 2. 2015 June flare (main part)
 - first minute-scale variability observed by Fermi-LAT
- 2. Discussions
 - constraint of jet parameter at γ -ray emission region
 - 1. where is the γ -ray emission region in jet?
 - 2. what is the dominated energy component?
 - *3.* what is the origin of the γ -ray radiation?


(what is the acceleration mechanism?)

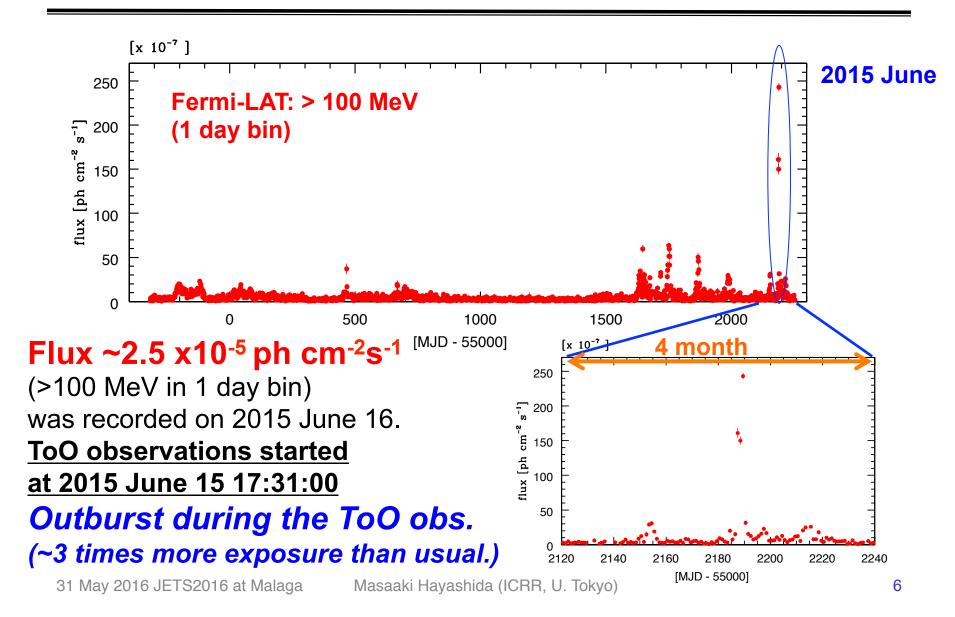
3C 279 (FSRQ: z=0.536)

- Mass ~ (3-8) x 10⁸M_{solar}
- $L_d \sim 6 \times 10^{45} \text{ erg/s}$
- bright γ-ray source (both EGERT and Fermi-LAT)
- the first TeV FSRQ (among 4 TeV FSRQ)

Intensive γ -ray flare in 2013 Dec.


- <u>a few hours variability</u> (t_{rise} ~ 2h, t_{fall} ~ 6h)
- asymmetric profile

<u>Very hard γ-ray index (Γ~1.7)</u>
 (need hard electron p<2)

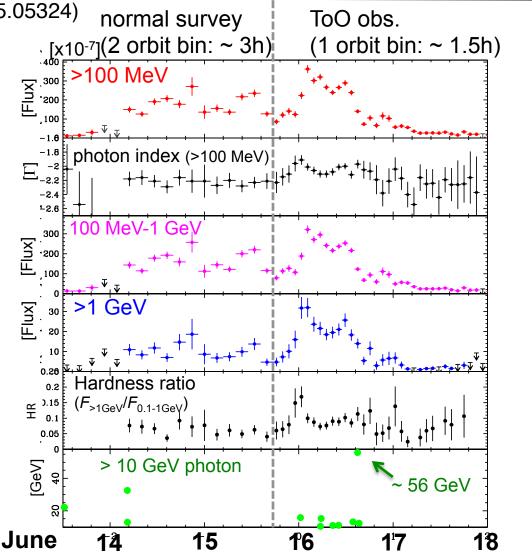

- no concurrent flare in other bands
 → 'orphan' γ-ray flare
- $L_{IC}/L_{sync} > 100$ \rightarrow very matter dominated 4

Masaaki Hayashida (ICRR, U. Tokyo)

Fermi-II acceleration for hard γ-ray spectrum

Giant outburst in 2015 June

LAT light curves (orbit bin): 4.5 days


(Fermi-LAT Coll., 16, ApJL, arXiv:1605.05324) reached F(>100 MeV): ~4x10⁻⁵ ph cm⁻² s⁻¹

<past flares> 2013-2014 (Hayashida+2015, ApJ) ~1.2x10⁻⁵ ph cm⁻² s⁻¹

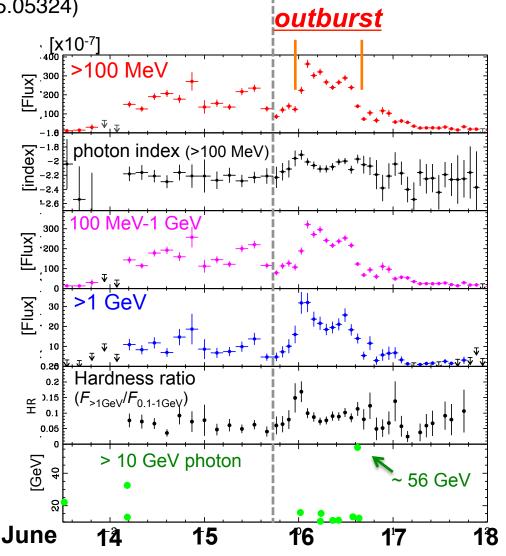
1996 (EGRET) ~1.2x10⁻⁵ ph cm⁻² s⁻¹

the current LAT spectrum (~ 2.0) is <u>not</u> as hard as the hardest seen in the 2013/2014 flaring activity (it was ~ 1.7)

Masaaki Hayashida (ICRR, U. Tokyo)

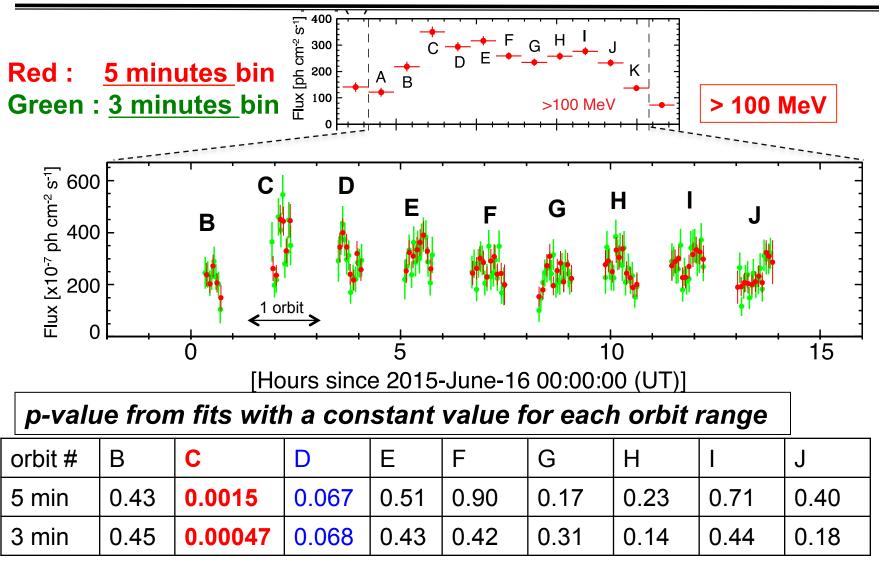
³¹ May 2016 JETS2016 at Malaga

LAT light curves (orbit bin): 4.5 days

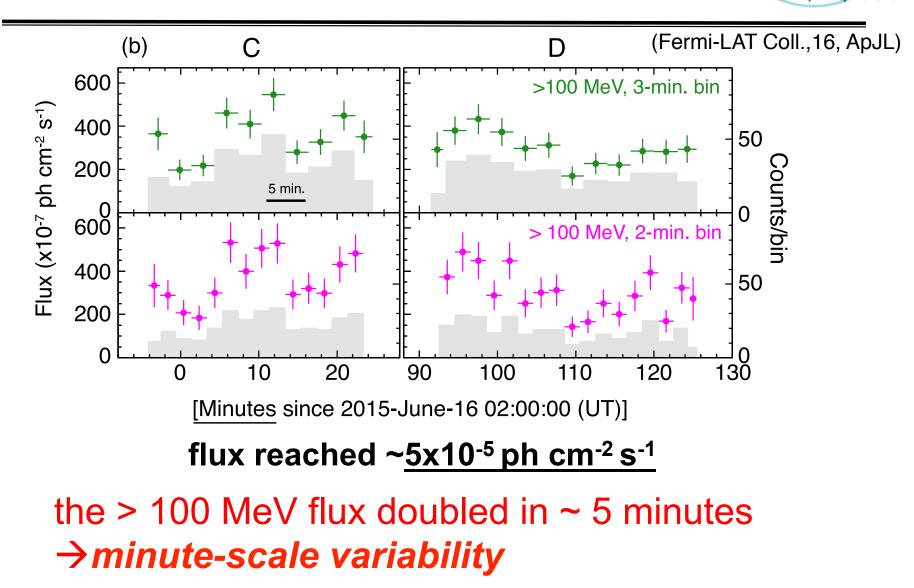

(Fermi-LAT Coll.,16, ApJL, arXiv:1605.05324) reached F(>100 MeV): ~4x10⁻⁵ ph cm⁻² s⁻¹

<past flares> 2013-2014 (Hayashida+2015, ApJ) ~1.2x10⁻⁵ ph cm⁻² s⁻¹

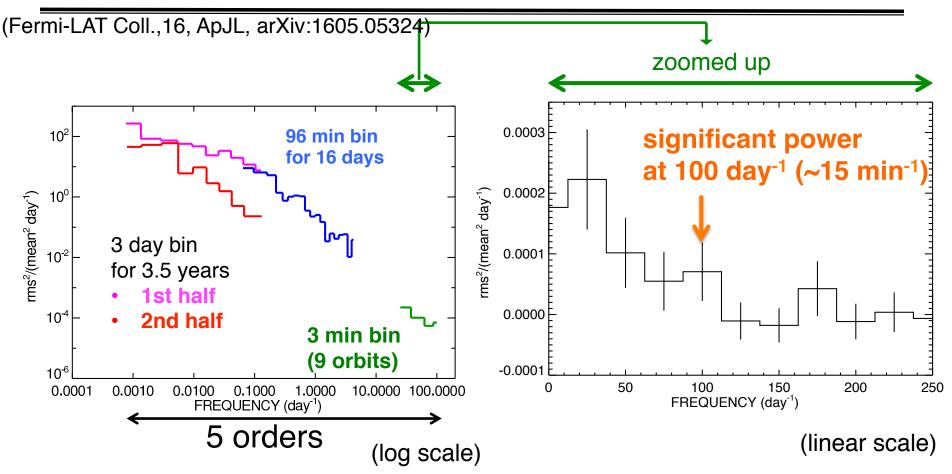
1996 (EGRET) ~1.2x10⁻⁵ ph cm⁻² s⁻¹


the current LAT spectrum (~ 2.0) is <u>not</u> as hard as the hardest seen in the 2013/2014 flaring activity (it was ~ 1.7)

Masaaki Hayashida (ICRR, U. Tokyo)

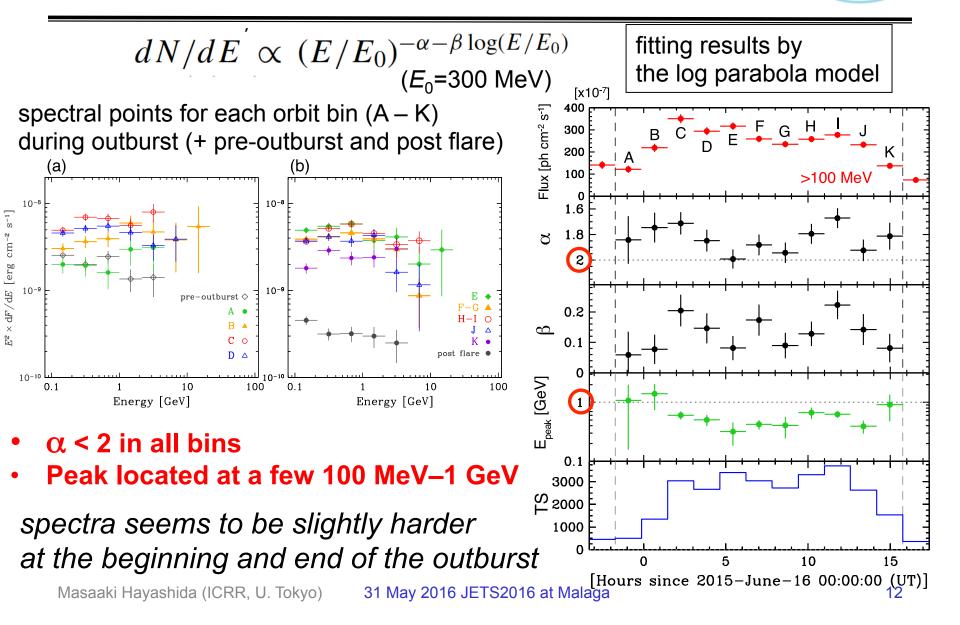

³¹ May 2016 JETS2016 at Malaga

Sub-orbital time scale light curve


significant variability in orbit C (and a possible hint in orbit D)

Masaaki Hayashida (ICRR, U. Tokyo) 31 May 2016 JETS2016 at Malaga

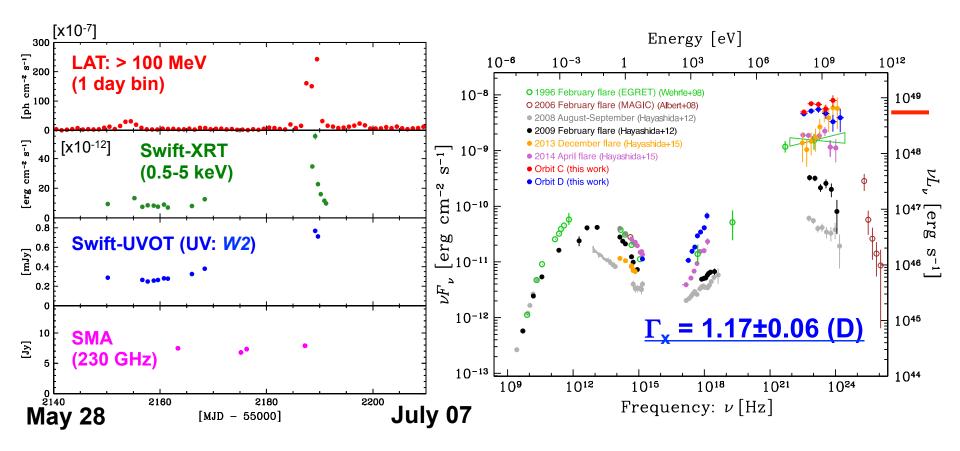
Power density spectrum



See more details in a talk by Stefan Larsson (tomorrow, 10:30am ~)

31 May 2016 JETS2016 at Malaga

Masaaki Hayashida (ICRR, U. Tokyo)

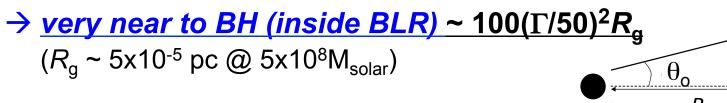

Gamma-ray spectra during the outburst

Multi-band observations

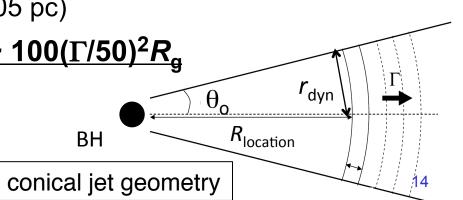
flares were also observed in X-ray and optical (UV) band, but not in the radio band

Very fast variability in blazars

 $\Gamma \theta_{o}$ =1


 $\delta \sim \Gamma$

source name	z	src type	t _{var}	energy	Lum.[erg/s]
PKS 2155-304	0.116	BL Lac	~ 2 min	>0.2 TeV	1e47
Mkn 501	0.034	BL Lac	~ 2 min	>0.15 TeV	1e45
PKS1222+21	0.432	FSRQ	~ 10 min	>0.1 TeV	1e47
IC310	0.0189	radio gal.	< 4 min	>0.3 TeV	1e44
3C 279	0.536	FSRQ	~ 5 min	>100 MeV	1e49

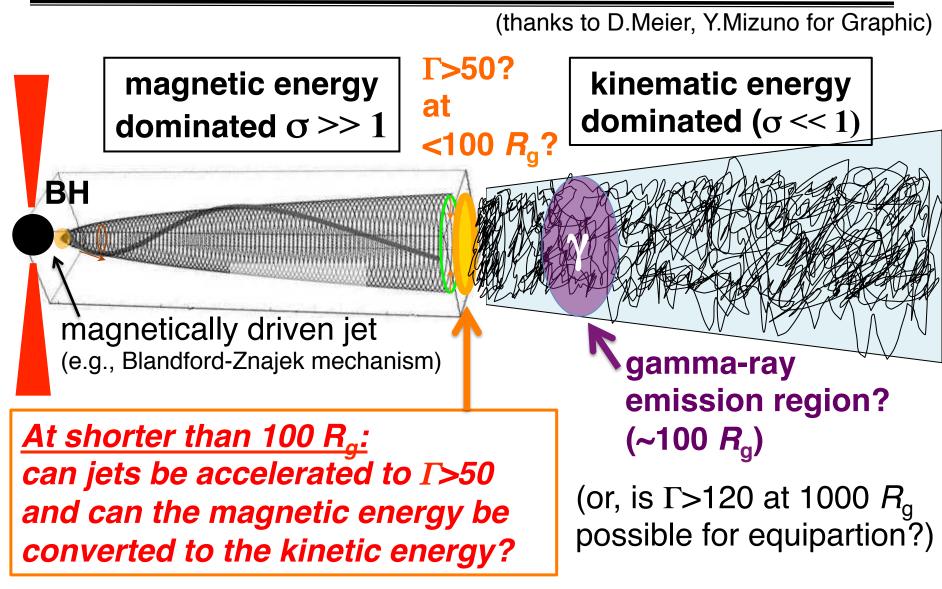

variability time scale: 5 minutes

r_{dyn} (emission region size) ~ 10⁻⁴ (δ /50) pc (~3x10¹⁴ cm)

*R*_{location} (emission location) ~*r*_{dyn}/θ_o ~ 0.005 (Γ/50)² (Γθ_o)⁻¹ pc (~10¹⁶cm) (R_{BLR} (broad line region size) ~ 0.05 pc)

Masaaki Hayashida (ICRR, U. Tokyo)

very small region


- <u>internal (inside emission region) absorption</u>: (E_{max} ~15 GeV) - $L_{soft (x-ray)}$ ~ 10⁴⁷ erg/s $\rightarrow \Gamma > 25$ to avoid the absorption
- <u>SSC constraint</u>: $L_{\gamma} \sim 10^{49} \text{ erg/s}$, $L_{\gamma} / L_{\text{syn}} \sim 100$ (Compton dominance) - $L_{\text{SSC}} < L_{x} \sim 10^{47} \text{ erg/s} \rightarrow \Gamma > 46$
- <u>jet energetics</u>: $L_{jet} \sim L_{\gamma} / (\eta_j \Gamma^2) \sim 4 \times 10^{46} (\Gamma/50)^{-2} \text{ erg/s} (\eta_j \sim 0.1)$ (~ 7 $L_{disk} \sim 0.5 L_{Edd} : L_{Edd} \sim 8 \times 10^{46} \text{ erg/s})$

− $L_{\rm B}/L_{\rm jet}$ ~ $5 \times 10^{-4} (\Gamma/50)^8$ → very low magnetization

• if $\Gamma \sim 120$, then $L_{\rm B} \sim L_{\rm j}/2$ (equipartition)

• jets need to be accelerated to Γ ~50 (low magnetization case) at 100 $R_{\rm g}$ or Γ ~120 (equipartition case) at 1200 $R_{\rm g}$ *it's challenging the current jet acceleration/formation models*

At jet base: which energies is dominated? magnetic or kinematic?

<u>R_{location}</u> ~ r_{dyn}/θ_o ~ 0.005 ($\Gamma/50$)² ($\Gamma\theta_o$)⁻¹ pc (0.005 pc ~ 100 r_g)

- simple conical jet with opening angle $\Gamma \theta_o = 1$ ($\theta_o \sim 1.1 deg$)?
 - − small opening angle, $\Gamma \theta_0$ =0.1 (→ θ_0 ~0.1deg with Γ =50)
 - $R_{location:} 100 R_g \rightarrow 1000 R_g$ (0.05 pc), still inside BLR
 - parabolic? re-confinement jet? ($r_{dyn} \sim 10^{-4} \text{ pc} [4x10^{14} \text{ cm}]$)
- *emission from the entire jet cross section?*
 - in a internal narrow fast component (spine sheath jet structure)?
 - γ -ray emission region (r_{dyn}) and particle accelerating region (r_{acc}) can be different ?
 - magnetic reconnection: $r_{dyn}/r_{acc} \sim 0.01-0.1$ (Cerutti+12, Nalewajko+12)

Note: γ -ray isotropic luminosity of flare: ~10⁴⁹ erg/s

• *just biased on γ-ray observations?*

Radio views on blazar jets for γ-ray views

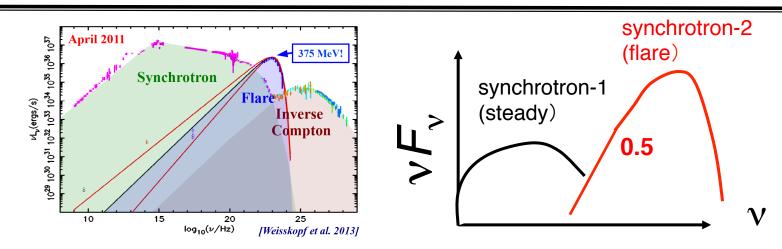
(by my non-professional views)

- radio core shift measurements (idea: e.g.,Marscher+83, results: M87 [~a few R_g] :Kino+15)
 - favor magnetically dominated jets

- iews) Institute for Cosmic Ray Research University of Tokyo 40 μas 40 μas beam beam optically-thic region (≥ 21 μas) optically-thin region (40 μas) Asada&Nakamura12
- evidence of parabolic shape of inner jet(e.g.,M87: Asada&Nakamu Hada+13

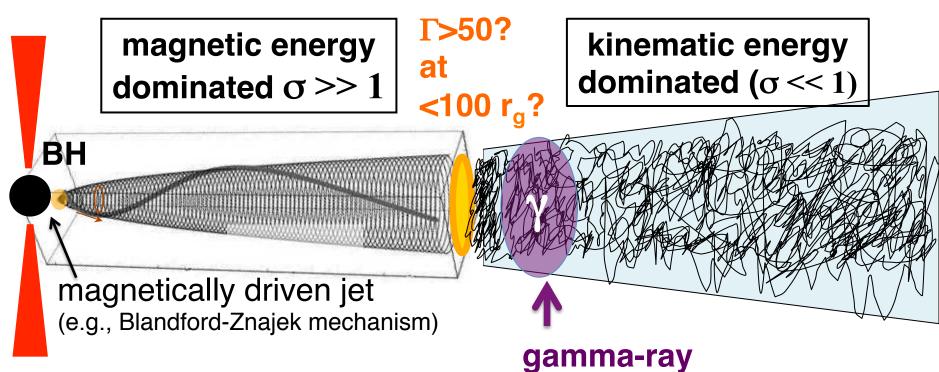
Any differences in the jet energy component between FRI/BLLac (M87) and FRII/FSRQ (3C279)?

- generally good corrections between radio and γ -ray flux
- VLBI core ejections (and optical polarization) coincide with γ -ray flares \rightarrow emission region in pc scales (>10⁵ R_{g})

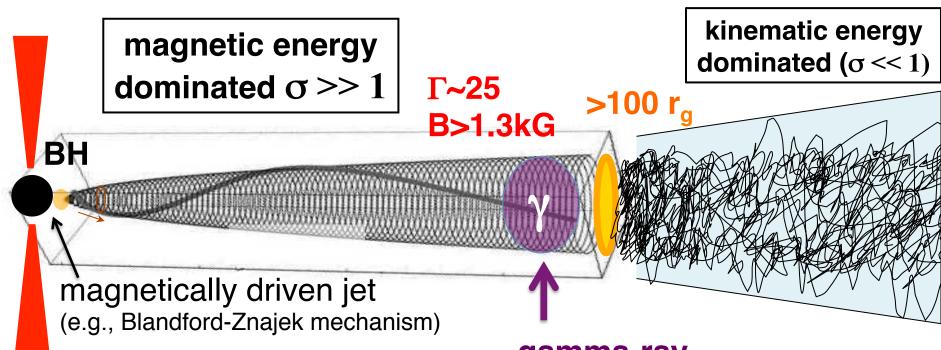

 γ -ray dissipation region is not unique in jet (10² –10⁵⁻⁶ R_g) Both views on γ -ray and radio bands is important to understand blazar jets

<u> $R_{\text{location}} \sim r_{\text{dyn}}/\theta_o \sim 0.005 \ (\Gamma/50)^2 \ (\Gamma\theta_o)^{-1} \text{ pc } (0.005 \text{ pc} \sim 100 r_g)$ </u>

- simple conical jet with opening angle $\Gamma \theta_o = 1$ ($\theta_o \sim 1.1 deg$)?
 - small opening angle, $\Gamma \theta_0 = 0.1 ~(\rightarrow \theta_0 \sim 0.1 \text{ deg with } \Gamma = 50)$
 - $R_{location:} 100 R_g \rightarrow 1000 R_g$ (0.05 pc), still inside BLR
 - parabolic? re-confinement jet? ($r_{dyn} \sim 10^{-4} \text{ pc} [4x10^{14} \text{ cm}]$)
- *emission from the entire jet cross section?*
 - in a internal narrow fast component (spine sheath jet structure)?
 - γ -ray emission region (r_{dyn}) and particle accelerating region (r_{acc}) can be different ?
 - magnetic reconnection: $r_{dyn}/r_{acc} \sim 0.01-0.1$ (Cerutti+12, Nalewajko+12) Note: γ -ray isotropic luminosity of flare: $\sim 10^{49}$ erg/s
- *just biased on γ-ray observations?*
- *the γ-ray origin is inverse-Compton scattering?*


Synchrotron emission origin for γ-rays

similar case to Crab flares.


- radiation reaction limit : E_{sync,max} = 4(δ/25) GeV (> E_{peak}~1GeV) (e.g, Guilbert et al., 1983 ; de Jager et al., 1996 ; Cerutti et al., 2012)
- constraint of Γ can be reduced to <u>>25</u> because SSC constraint is no longer valid
- $\gamma_e \sim 1.6 \times 10^6$ at B=1.3kG (and Γ =25) $\rightarrow L_B \sim L_{jet}/2$ (equipartition)
 - cooling time ~ 3 ms : $EF(E) \propto E^{0.5}$ (X to γ rays: a rising part of SED)
 - but the observed X-ray spectrum was rather hard ($\propto E^{0.83\pm0.06}$)...
 - not easy to explain (sub-)TeV energy flare

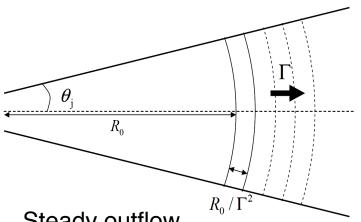
At jet base: which energies is dominated? magnetic or kinematic?

gamma-ray emission region? (~100 *r*_g) [Inverse-Compton]

At jet base: which energies is dominated? magnetic or kinematic?

Proton synchrotron mechanism may also work at jet base (with very strong magnetic fields, dense target radiation fields) gamma-ray emission region? (~100 *r*_g) [Synchrotron]

Summary & Conclusion



- FSRQ 3C 279 showed γ -ray outbursts (>10⁻⁵ ph/cm²/s) in last years
 - 2013 Dec.: orphan $\gamma\text{-ray}$ flare, very hard index ($\Gamma_{\!\gamma}\!\!\sim\!\!1.7$)
 - Fermi-II acceleration model could reproduce the results
 - 2015 Jun.: historical largest outburst in 3C 279
 - 5 min flux doubling time, $F_{\gamma} \sim 4 \times 10^{-5} \text{ ph/cm}^2/\text{s}^1$, $L_{\gamma} \sim 10^{49} \text{ erg/s}$
- where is the *γ*-ray emission site?
 - inside BLR (~100 R_g) for vary fast variability at 100 MeV
 - Jets should be sufficiently accelerated (Γ >50) even at 100 R_{g}
- what is the dominant component in jet?
 - emission model with γ -ray : matter dominated : $L_B/L_{jet} < 10^{-3}$ (at 100 R_g)
 - jet simulation: magnetically dominated at jet base
 - radio observation (SSA): magnetically dominated (M87 at \sim a few R_g)
- what is the origin of the γ -ray radiation?
 - synchrotron origin scenario may work as solution for the σ problem'.

back up

Stochastic acceleration (Fermi-II)

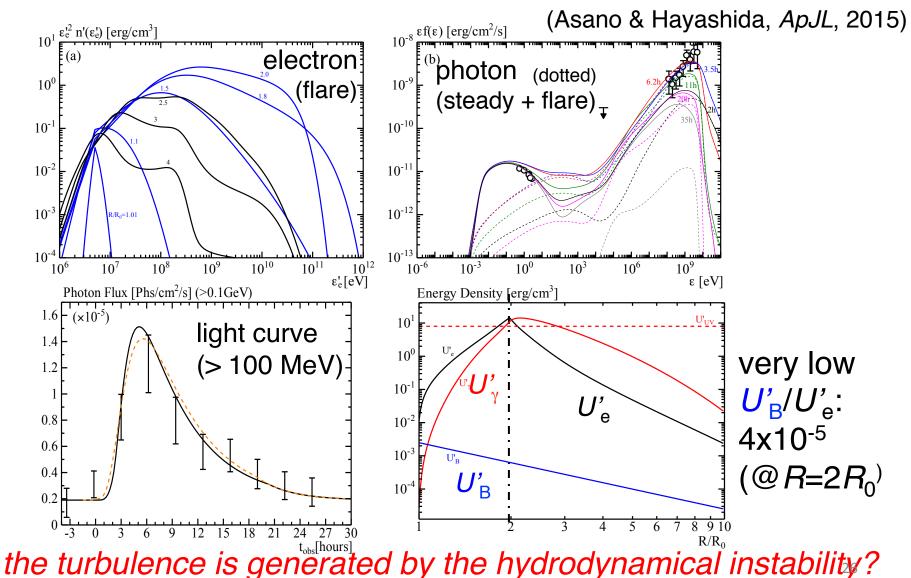
(Model: Asano+2014, *ApJ* 784, 64)

conical jet geometry \mathbf{D} $B' = B_0(R/R_0)$ $\theta = 1/\Gamma$

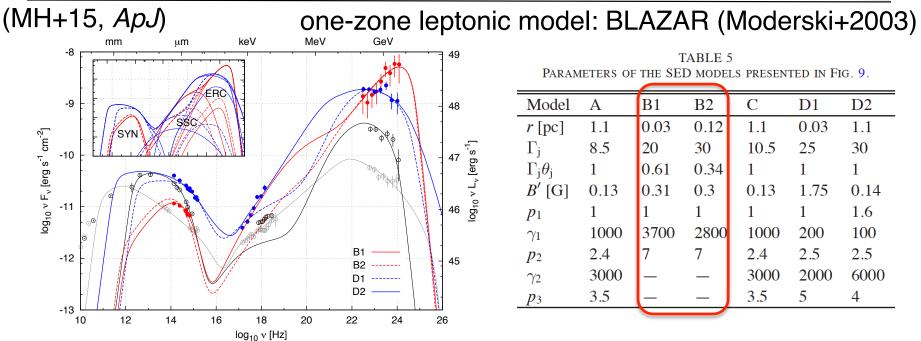
- Steady outflow •
- Continuous shell ejection with a width of R_0/Γ in commoving frame •
- Electron injection from $R=R_0$ to $2R_0$ with stochastic acceleration •
- Turbulence Index: q=2 (hard-sphere scattering) •
- Both injection and acceleration stop at $R=2R_0$ •

Physical Processes

- **Electron injection**
- Stochastic acceleration
- Synchrotron emission and cooling •
- Inverse Compton emission and cooling •
- Adiabatic cooling $(V \propto R^2)$ ٠
- Photon escape
- No electron escape!


<energy (ϵ) diffusion coefficient>

$$D(\varepsilon_{\rm e}) = \frac{\bar{\xi}\pi e c \varepsilon_{\rm e} k |\delta B^2|_k}{8B} \equiv \underline{K} \varepsilon_{\rm e}^q$$


Hereafter, q = 2 ; $\theta_{\rm i} = 1/\Gamma$, $\gamma_{\rm ini} = 10$.

$$B' = B_0 (R/R_0)^{-1}$$

All results on the Fermi-II for the 3C279 flare

emission model for Period B

- Gamma-ray emission site should be inside BLR (< 0.1 pc)
 efficient cooling at 100 MeV for 2hr variability
- 2. very matter dominated jet: $L_B/L_{jet} \sim 10^{-4}$
- 3. hard index (γ -ray band) in the fast cooling regime
 - required very hard index for electron injection spectrum: p=1