Non Blazar Quasars

Ken Kellermann NRAO, Charlottesville

with
Jim Condon, Amy Kimball
Rick Perley, and Zeljko Ivezic

Blazars Through Sharp Eyes
June, 2016
Malaga, Spain

Quasi-stellar Galaxies aka Radio Quiet Quasars

THE ASTROPHYSICAL JOURNAL

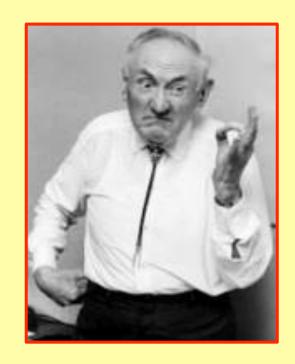
VOLUME 141

MAY 15, 1965

NUMBER 4

THE EXISTENCE OF A MAJOR NEW CONSTITUENT OF THE UNIVERSE: THE QUASI-STELLAR GALAXIES

ALLAN SANDAGE


Mount Wilson and Palomar Observatories
Carnegie Institution of Washington, California Institute of Technology

Received May 15, 1965

ABSTRACT

Photometric, number count, and spectrographic evidence is presented to show that most of the blue, starlike objects fainter than $m_{pg} = 16^m$ found in color surveys of high-latitude fields are extragalactic and represent an entirely new class of objects Members of the class called here quasi-stellar galaxies (QSG) resemble the quasi-stellar radio sources (QSS) in many optical properties, but they are radio-quiet. The QSG brighter than $m_{pg} = 19^m$ are 10^3 times more numerous per square degree than the QSS that are brighter than 9 flux units. The surface density of QSG is about 4 objects per square degree to $m_{pg} = 19^m$.

"In spite of all these facts being known to him in 1964, Sandage attempted one of the most astounding feats of plagiarism by announcing the existence of a major new component of the Universe: the quasi-stellar galaxies" Fritz Zwicky, 1971

- Is there a continuous distribution of radio luminosity or are there two separate populations of QSOs?
 - Radio Loud Quasars
 - Radio Quiet Quasars

Radio Loud and Radio Quiet Quasars: One or Two populations?

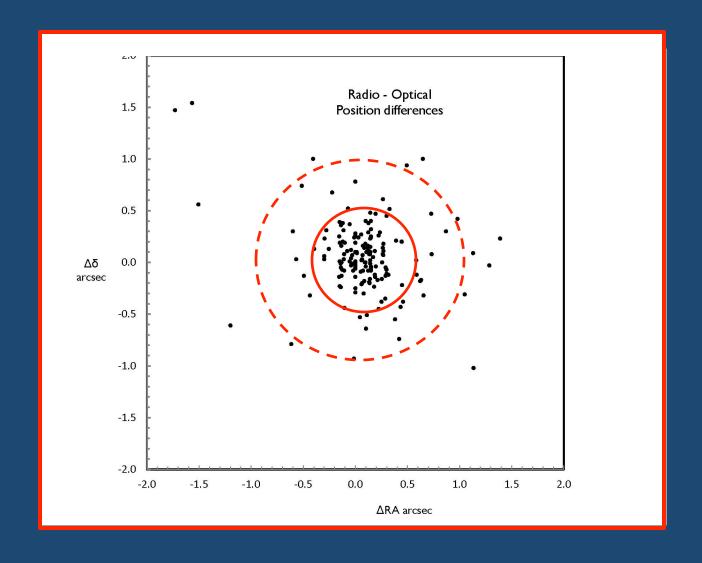
Separate Population

- Kellermann et al., 1989, 1994
- Miller, et al, 1990, 1993
- Sopp & Alexander, 1991
- Stocke et al. 1992
- Visnovsky et al., 1992
- Peterson, 1997
- Kukula et al., 1998
- Goldschmidt et al. 1999
- Krolik, 1999
- Kembhavi & Narlikar, 1999
- Ivezic, et al., 2002, 2004
- Laor, 2004
- Jiang et al. 2007
- Zamfir et al., 2008
- Balokovic et al., 2012
- Kimball et al., 2011
- Condon et al., 2013

Continuous Distribution

- Becker et al. 1995
- White et al. 2000
- White et al. 2007
- Lacy et al., , 2001
- Cirasuolo, et al. 2003
- Wals et al. 2005
- Barvainis, et al., 2005
- Rafter et al., 2009
- Mahony et al. 2012
- Singal et al, 2011
- Bonchi et al. 2013

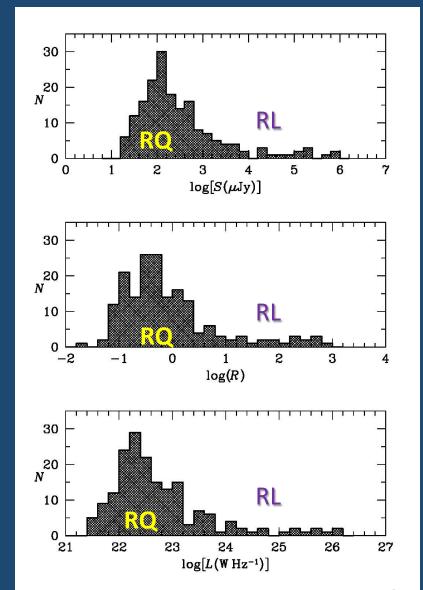
JVLA Observations

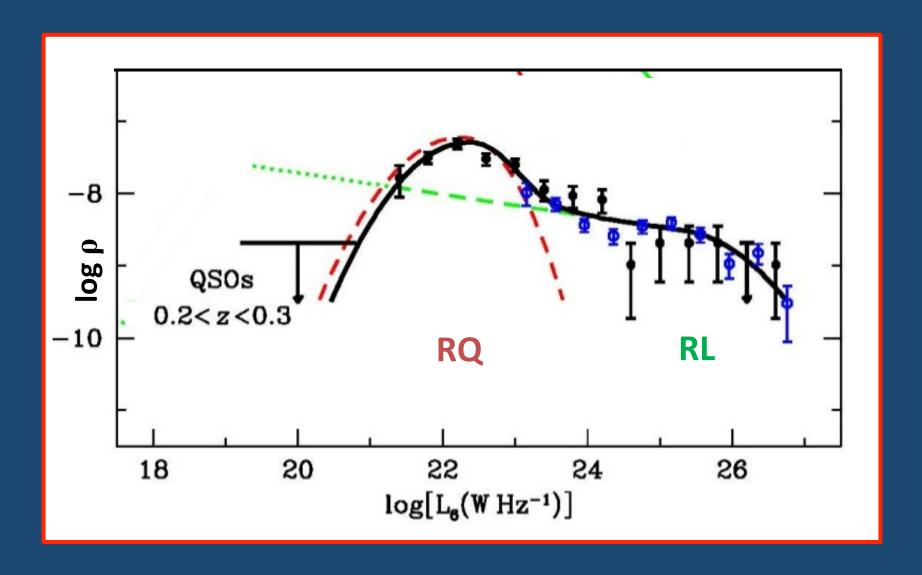


Kimball et al. 2011

of SDSS QSOs

- 179 (178) SDSS QSOs
- 14<*i*<19
- 0.2 < z < 0.3; $M_i < -23$
- 5<v<7 *GHz*
- $\sigma \sim 6 \,\mu/y \,[S > 20 \,\mu Jy]$
- All but 2 QSOs S > 20 μ**J**y
- Mostly unresolved
- 13/18 (S > 5 mJy) extended


Radio/Optical Distribution


Peak Values

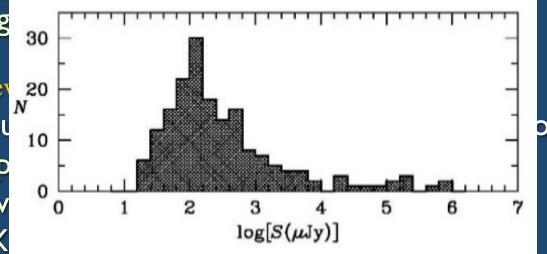
N RL $\log[S_p(\mu \text{Jy beam}^{-1})]$ N RL **.** . _2 $\log(R_{p})$ N RL 0 L 21 $log[L_p(W Hz^{-1} beam^{-1})]$

Integrated Values

Quasar Radio Luminosity Function

Radio Loud & Radio Quiet Quasars

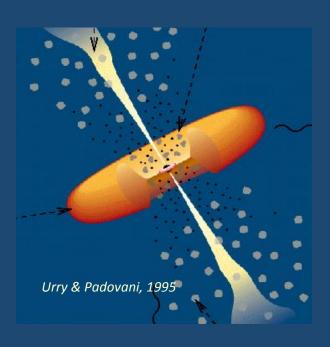
- Radio loud and radio quiet quasars reflect two distinct populations
 - Radio Loud QSOs associated with a SMBH & Large scale structure - Blazars


Radio Quiet QSOs probably associated mostly with star formation in host g

• $L \sim 10^{22.5} \text{W/Hz}$

• Unresolved: No ev 20

The inability to previou


- Inhomogeneous op
- Wide range of z/ev
- The use of radio/X

- Inappropriate definition of RQ $P > 10^{23}$ W/Hz, R < I
- The lack of sufficient sensitivity to detect the peak of the RQ distribution in QSOs

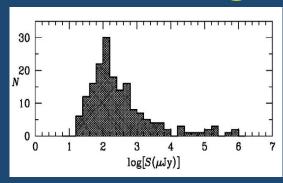
Why Are Only Some Quasars Powerful Radio Sources?

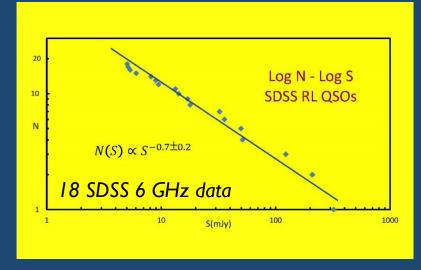
- Intermittent radio activity
- Absorption
 - free-free
 - SSA
- Host galaxy
- SMBH: Mass Spin
- Influence of companion SMBH
- Relativistic Beaming -
 - Scheuer and Readhead, 1979
 - Too many radio loud sources
 - Observed source count grossly inconsistent

10% Are there too many radio loud quasars?

- For $[\mathbb{W}] \sim 10$, HPBW ~ 0.1 r ~ 0.01 sr; if isotropic ~ 0.1% radio loud
- Lorentz factor distribution st
 - Volume limited sample 1 < ☒ <2 (List 1997)
- Jets have finite width
- Jets are bent and/or different ejection angles
- Bulk flow may be smaller than pattern flow
- Optical emission may also be beamed
- Obscuring torus of unified models may lead to orientation bias — (Barthel, 1989)

Are RLQs the result of beaming?


$$N(S) \propto S \uparrow - x$$


$$x=1/p-\alpha$$

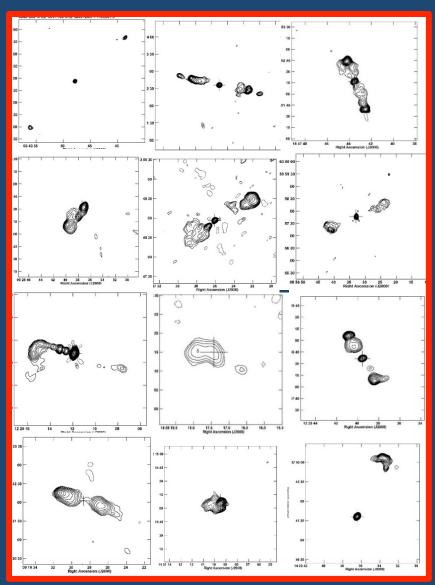
$$2$$

$$-1 < \alpha < 0$$
 $S \propto v \uparrow \alpha$

 $N(S) \propto S \uparrow -1/3$ to $S \uparrow -1/2$

- Small sample
- Low luminosity
- Unbeamed contrubtion

Counts from Other QSO Samples


- 0.25 < z < 0.45
- 163 SDSS
- $S_{1.4 \text{ GHz}} > 2.4 \text{ mJy}$
- $N(S) \propto S \uparrow -0.2$ W ± 0.02

- 1.8 < z < 2.5
- 191 SDSS QSOs
- $S_{1.4 \text{ GHz}} > 2.4 \text{ mJy}$
- $N(S) \propto S1$ -0.01±M0.02

 $N(S) \propto S \uparrow -0.33$ to $S \uparrow -0.5$

RL QSOs with Extended Structure

- RQ quasars "all" unresolved
- 13/18 RL quasars have extended structure
- Some one-sided
- Some symmetric
 - No Doppler boosting!
- Cannot be accommodated by beaming models

Summary

- Most QSOs are not strong radio sources
- Two flavors
 - Radio Loud Quasars ---- SMBHs
 - Radio Quiet Quasars ---- Star formation in host galaxy
- Much of published discussion based samples of RQQs based on RLQs with L ≥ 10²³ W/Hz or R>10
- Relativistic beaming probably important for parsec scale luminosity of RLQ
 - Does not explain the kpc/Mpc scale structure

Thank you

