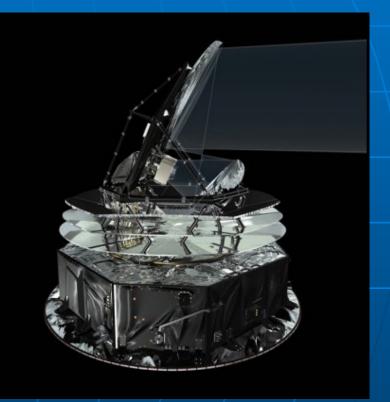
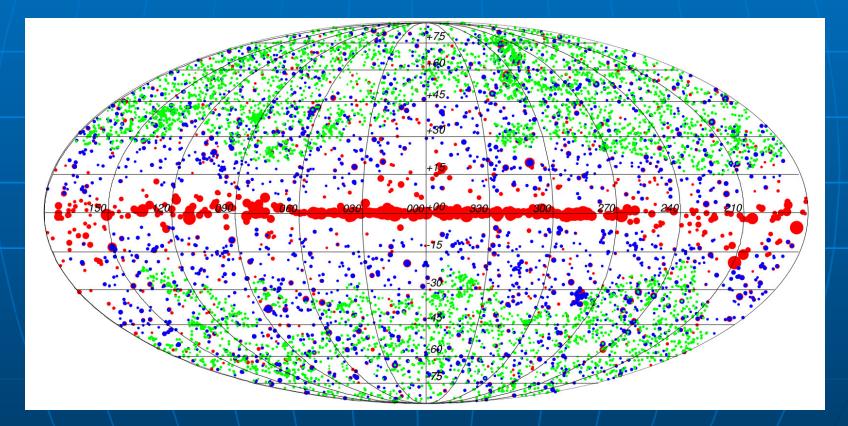
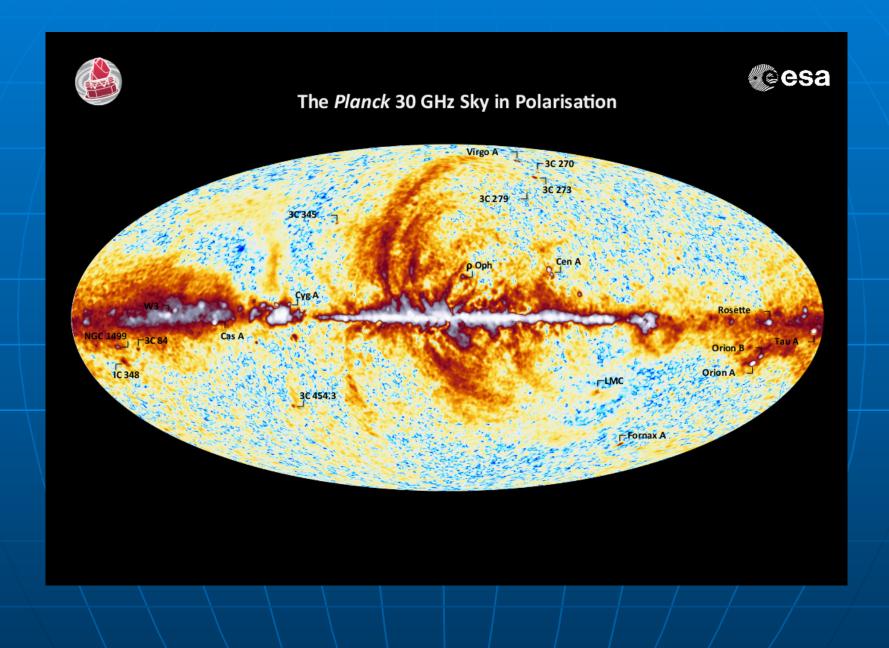
Multifrequency studies of active galactic nuclei in the *Planck* satellite era

Anne Lähteenmäki Aalto University Metsähovi Radio Observatory & Dept of Radio Science and Engineering

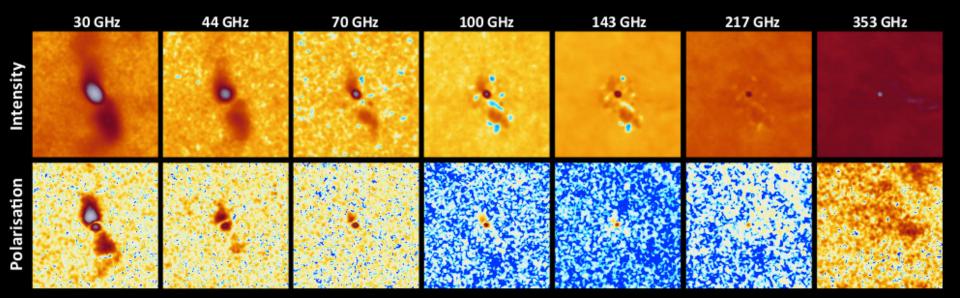

& *Planck* Collaboration

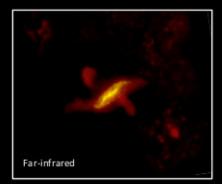

Planck satellite


14.5.2009 - 23.10.2013

CMB + foreground sources
9 frequencies 30 - 857 GHz
Low Frequency Instrument
High Frequency Instrument
5 to 8 full sky surveys
every six months

The second *Planck* catalogue of compact sources released (A&A in press)





Planck's view of Centaurus A

ESA/Herschel/SPIRE/PACS

ESA/XMM-Newton/EPIC

ESO

in press

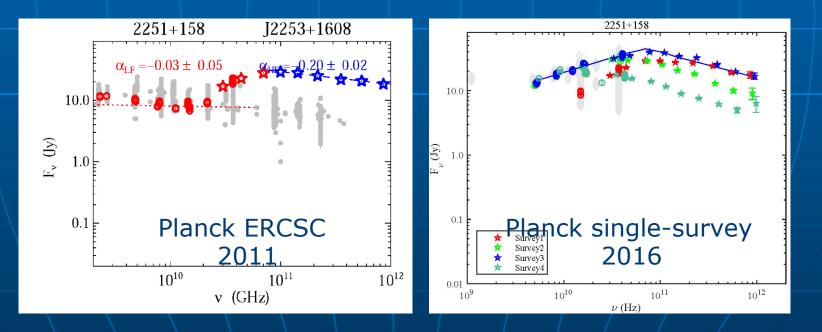
Planck intermediate results. XLV. Radio spectra of northern extragalactic radio sources

Planck Collaboration: P. A. R. Ade⁸⁴, N. Aghanim⁵⁷, H. D. Aller⁶, M. F. Aller⁶, M. Arnaud⁷¹, J. Aumont⁵⁷, C. Baccigalupi⁸², A. J. Banday^{93,11}, R. B. Barreiro⁶², N. Bartolo^{29,63}, E. Battaner^{94,95}, K. Benabed^{58,92}, A. Benoit-Lévy^{23,58,92}, J.-P. Bernard^{93,11}, M. Bersanelli^{32,49}, P. Bielewicz^{79,11,82}, A. Bonaldi⁶⁵, L. Bonavera⁶², J. R. Bond¹⁰, J. Borrill^{15,88}, F. R. Bouchet^{58,85}, C. Burigana^{48,30,50}, E. Calabrese⁹⁰, A. Catalano^{72,70}, H. C. Chiang^{26,8}, P. R. Christensen^{80,34}, D. L. Clements⁵⁴, L. P. L. Colombo^{22,64}, F. Couchot⁶⁹, B. P. Crill^{64,13}, A. Curto^{62,7,67}, F. Cuttaia⁴⁸, L. Danese⁸², R. D. Davies⁶⁵, R. J. Davis⁶⁵, P. de Bernardis³¹, A. de Rosa⁴⁸, G. de Zotti^{45,82}, J. Delabrouille¹, C. Dickinson⁶⁵, J. M. Diego⁶², H. Dole^{57,56}, S. Donzelli⁴⁹, O. Doré^{64,13}, A. Ducout^{58,54}, X. Dupac³⁶, G. Efstathiou⁵⁹, F. Elsner^{23,58,92}, H. K. Eriksen⁶⁰, F. Finelli^{48,50}, O. Forni^{93,11}, M. Frailis⁴⁷, A. A. Fraisse²⁶, E. Franceschi⁴⁸, S. Galeotta⁴⁷, S. Galli⁶⁶, K. Ganga¹, M. Giard^{93,11}, Y. Giraud-Héraud¹, E. Gjerløw⁶⁰, J. González-Nuevo^{20,62}, K. M. Górski^{64,96}, A. Gruppuso⁴⁸, M. A. Gurwell⁴², F. K. Hansen⁶⁰, D. L. Harrison^{59,67}, S. Henrot-Versillé⁶⁹, C. Hernández-Monteagudo^{14,76}, S. R. Hildebrandt^{64,13}, M. Hobson⁷, A. Hornstrup¹⁷, T. Hovatta^{3,12}, W. Hovest⁷⁶ K. M. Huffenberger²⁴, G. Hurier⁵⁷, A. H. Jaffe⁵⁴, T. R. Jaffe^{93,11}, E. Järvelä², E. Keihänen²⁵, R. Keskitalo¹⁵, T. S. Kisner⁷⁴, R. Kneissl^{35,9}, J. Knoche⁷⁶, M. Kunz^{18,57,4}, H. Kurki-Suonio^{25,44}, A. Lähteenmäki^{2,44}*, J.-M. Lamarre⁷⁰, A. Lasenby^{7,67}, M. Lattanzi³⁰, C. R. Lawrence⁶⁴, R. Leonardi³⁶, F. Levrier⁷⁰, M. Liguori^{29,63}, P. B. Lilje⁶⁰, M. Linden-Vørnle¹⁷, M. López-Caniego^{36,62}, P. M. Lubin²⁸, J. F. Macías-Pérez⁷², B. Maffei⁶⁵, D. Maino^{32,49}, N. Mandolesi^{48,30}, M. Maris⁴⁷, P. G. Martin¹⁰, E. Martínez-González⁶², S. Masi³¹, S. Matarrese^{29,63,40}, W. Max-Moerbeck^{12,77}, P. R. Meinhold²⁸, A. Melchiorri^{31,51}, A. Mennella^{32,49}, M. Migliaccio^{59,67}, M. Mingaliev^{89,68}, M.-A. Miville-Deschênes^{57,10}, A. Moneti⁵⁸, L. Montier^{93,11}, G. Morgante⁴⁸, D. Mortlock⁵⁴, D. Munshi⁸⁴, J. A. Murphy⁷⁸, F. Nati²⁶, P. Natoli^{30,5,48}, E. Nieppola^{3,39}, F. Noviello⁶⁵, D. Novikov⁷⁵, I. Novikov^{80,75}, L. Pagano^{31,51}, F. Pajot⁵⁷, D. Paoletti^{48,50}, B. Partridge⁴³, F. Pasian⁴⁷, T. J. Pearson^{13,55}, O. Perdereau⁶⁹, L. Perotto⁷², V. Pettorino⁴¹, F. Piacentini³¹, M. Piat¹, E. Pierpaoli²², S. Plaszczynski⁶⁹, E. Pointecouteau^{93,11}, G. Polenta^{5,46}, G. W. Pratt⁷¹, V. Ramakrishnan³, E. A. Rastorgueva-Foi⁸³, A. C. S Readhead¹², M. Reinecke⁷⁶, M. Remazeilles^{65,57,1}, C. Renault⁷², A. Renzi^{33,52}, J. L. Richards^{12,27}, I. Ristorcelli^{93,11}, G. Rocha^{64,13}, M. Rossetti^{32,49}, G. Roudier^{1,70,64}, J. A. Rubiño-Martín^{61,19}, B. Rusholme⁵⁵, M. Sandri⁴⁸, M. Savelainen^{25,44}, G. Savini⁸¹, D. Scott²¹, Y. Sotnikova⁸⁹, V. Stolyarov^{7,89,68}, R. Sunyaev^{76,86}, D. Sutton^{59,67}, A.-S. Suur-Uski^{25,44}, J.-F. Sygnet⁵⁸, J. Tammi³, J. A. Tauber³⁷, L. Terenzi^{38,48}, L. Toffolatti^{20,62,48}, M. Tomasi^{32,49}, M. Tornikoski³, M. Tristram⁶⁹, M. Tucci¹⁸, M. Turler⁵³, L. Valenziano⁴⁸, J. Valiviita^{25,44}, E. Valtaoja⁹¹, B. Van Tent⁷³, P. Vielva⁶², F. Villa⁴⁸, L. A. Wade⁶⁴, A. E. Wehrle⁸⁷, I. K. Wehus⁶⁴, D. Yvon¹⁶, A. Zacchei⁴⁷, and A. Zonca²⁸ 11.69 in

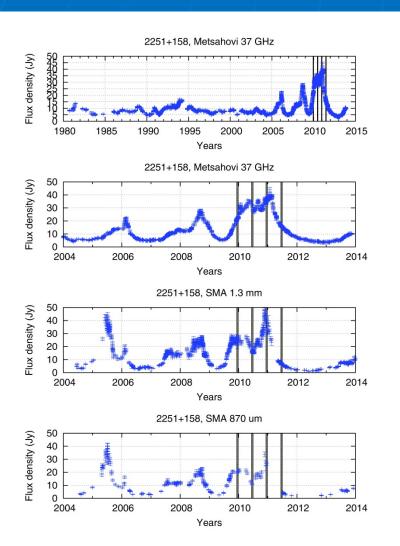
Planck early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources (Planck Collaboration 2011)

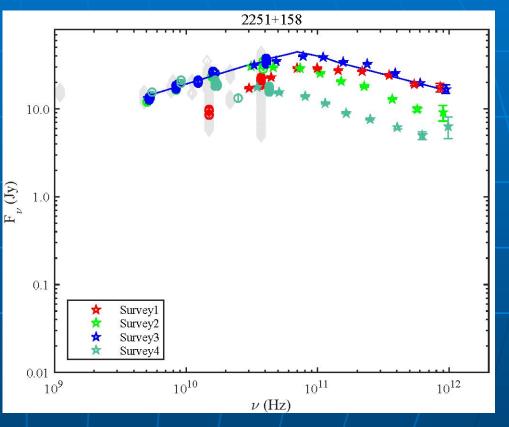
Simultaneous radio data: four epochs

Planck 30 – 857 GHz single-survey data
Metsähovi 37 GHz
RATAN-600 1 – 22 GHz
OVRO 15 GHz
UMRAO 4.8, 8, 14.5 GHz
SMA 230, 345 GHz (five sources)

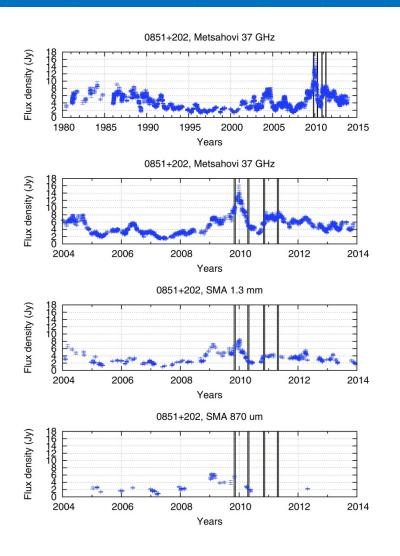

104 sources

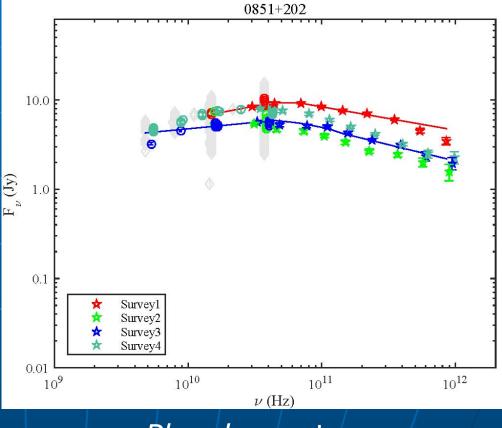
40 HPQ24 BLO14 LPQ8 GAL17 QSO1 UNFitted with a brokenpower-law model

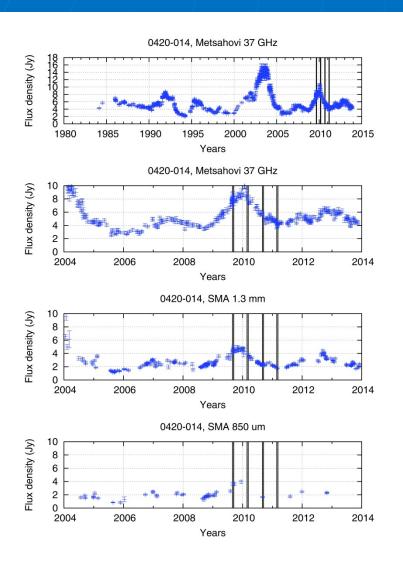

What kind of radio spectra do we see over 2 years?

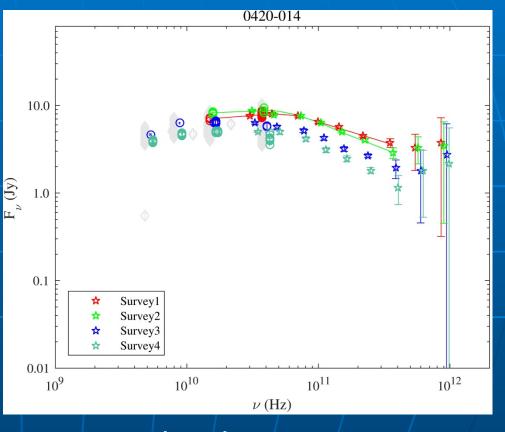

Evolving shocks, achromatic variations, non-variable

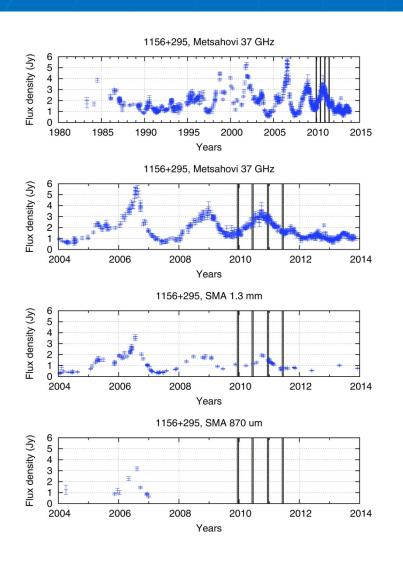
- Very few good examples of isolated, complete flares.
- Sampling every six months is too sparse to follow the evolution of a flare from beginning to end.

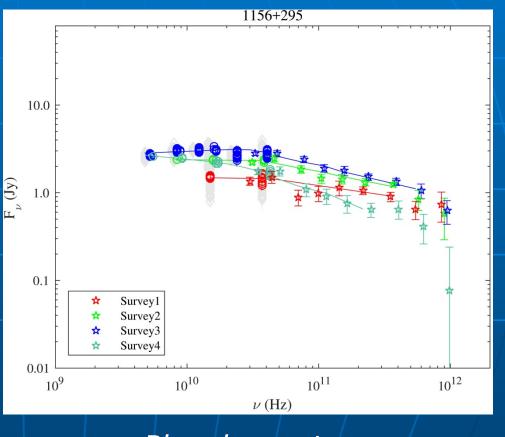


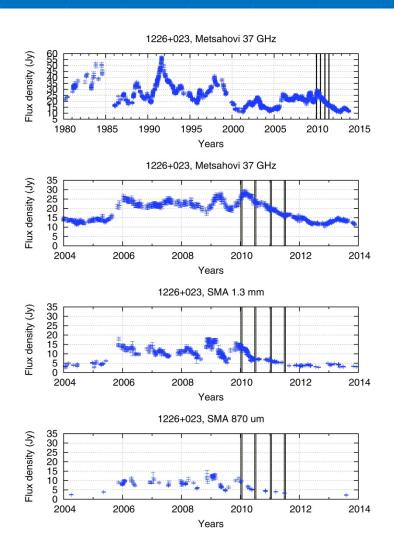


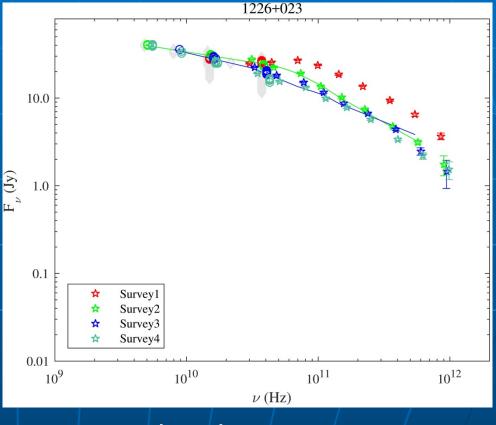


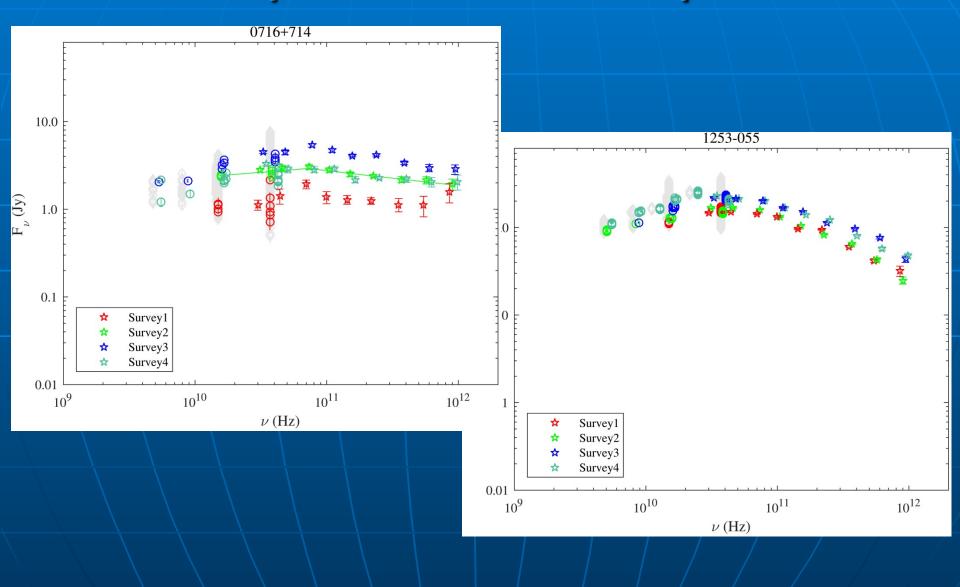


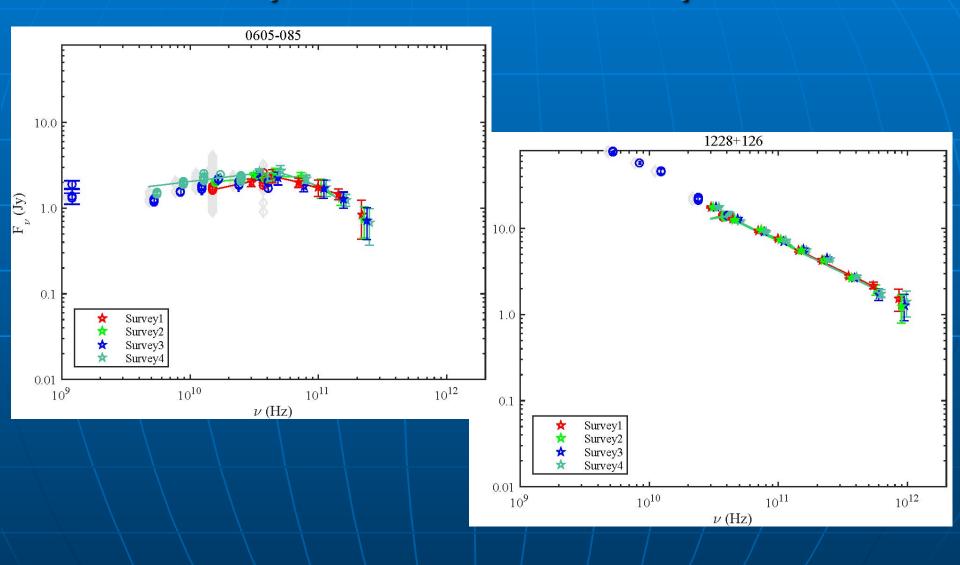












Examples of Planck spectra

Examples of Planck spectra

Variability models

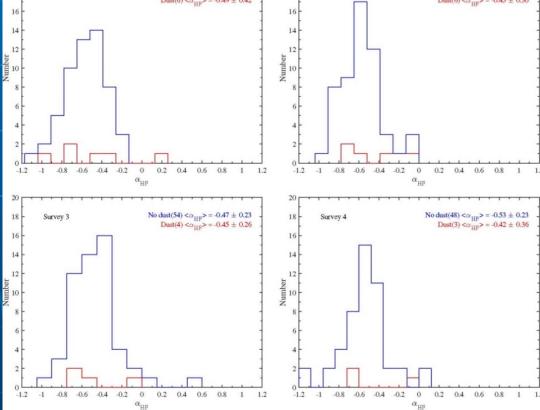
Marscher & Gear shocked jet model

Evolving shocks in the strongest outbursts only?

Turbulent extreme multi-zone (TEMZ) model

 Explains essentially both of the above.

Achromatic variations


- This study says yes, some others no.
- Sampling too sparse for catching entire flares.

Geometric models

 Predicts periodicities which are not observed over long time scales.

Flat high frequency spectra

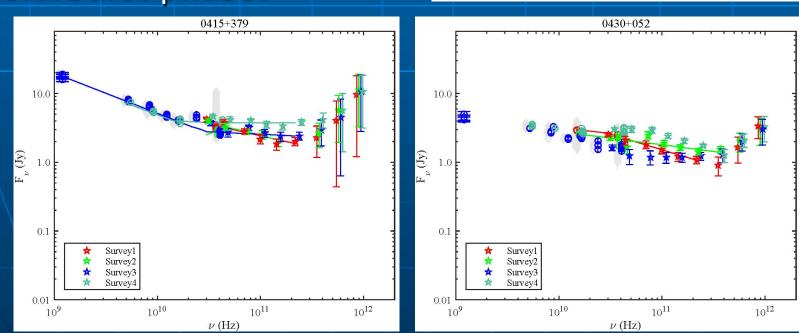
Original electron acceleration spectrum index is hard, 1.5 No dust(56) $<\alpha_{\rm HF}> = -0.55 \pm 0.20$ No dust(54) $<\alpha_{\rm HF}> = -0.58 \pm 0.21$ Survey 1 18 Survey 2 Dust(6) $<\alpha_{\rm HF}^{\rm HF}> = -0.49 \pm 0.42$ $Dust(6) < \alpha_{HF} > = -0.45 \pm 0.30$ Acceleration 16 16 14 14 mechanism? 12 12 aquinN 10

AGN classes

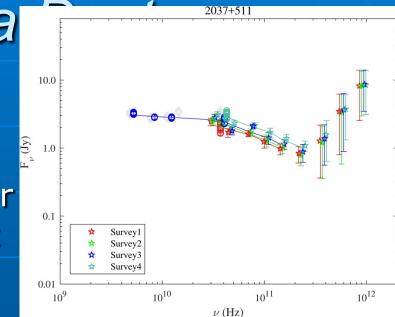
Differences in spectral indices between AGN classes
BL Lac objects vs. Low Polarization Quasars

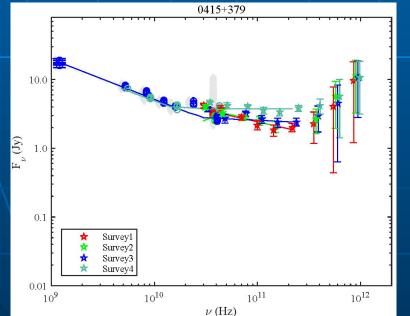
High break frequencies All sources

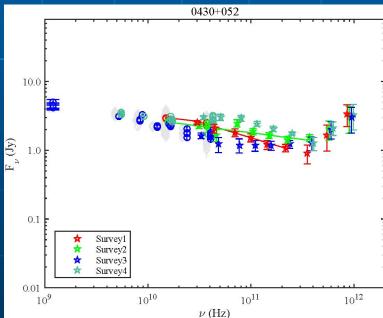
	Survey 1			Survey 2			Survey 3			Survey 4		
Class	$\alpha_{\rm LF}$	$\alpha_{\rm HF}$	$\alpha_{\rm bf}$	$\alpha_{\rm LF}$	$\alpha_{\rm HF}$	$\alpha_{\rm bf}$	$\alpha_{\rm LF}$	$\alpha_{\rm HF}$	$\alpha_{\rm bf}$	$\alpha_{\rm LF}$	$\alpha_{\rm HF}$	$\alpha_{\rm bf}$
BLO	0.005	-0.454	81.5	0.096	-0.369	61.3	0.082	-0.409	57.2	-0.090	-0.371	37.2
HPQ	0.008	-0.560	61.2	0.030	-0.647	65.2	0.000	-0.481	61.2	0.027	-0.535	55.0
LPQ	0.081	-0.784	54.1	0.120	-0.695	48.8	0.074	-0.640	42.0	-0.080	-0.679	43.2
QSO	0.205	-0.495	55.5	0.017	-0.530	72.6	0.230	-0.410	44.7	0.150	-0.541	43.5


Spectral shapes steep peaking

Dusty sources aka Dirty blazars


 A clear upturn at the highest frequencies
Galactic contamination or intrinsic cold (15 to 20 K) dust left from the starburst phase?


Source	Z	Optical class	Fig.
0238-084	0.005	Seyfert 2	23
0333+321	1.258	Quasar	26
0415+379	0.049	Seyfert 1	29
0430+052	0.033	Seyfert 1	31
0446+112	1.207	BL Lac	32
1954+513	1.223	Quasar	93
2037+511	1.686	Quasar	97

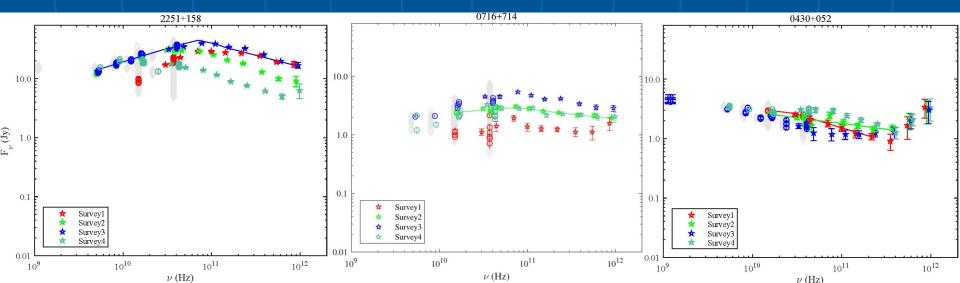


Dirty blazars aka

- A clear upturn at the highest frequencies
- Galactic contamination or intrinsic cold (20 K) dust left from the starburst phase?

Future work

- SEDs for the full sample
- "Flaring sources"


. . .

....

- Specific source samples
 - Narrow-line Seyfert 1 galaxies (see poster by Järvelä & Lähteenmäki)

Summary

- Evolving shocks in jet vs. achromatic variations? TEMZ?
- 2. Flat high frequency radio spectra
- 3. High break frequencies
- 4. BLOs vs. LPQs
- 5. Intrinsic cold dust in low-*z* AGN

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 50 scientific institutes in Europe, the USA and Canada

Planck is a project of the European Space Agency ---ESA -- with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.