A parsec scale multi-frequency polarimetric analysis of the TeV blazar Mrk 421

Blazars through Sharp Multi-Wavelength Eyes conference. Málaga, Spain, 30 May - 3 June 2016.

Presented by:

Rocco Lico,

M.Giroletti, M.Orienti, G.Giovannini, J.L.Gomez, C.Casadio, F.D'Ammando, M.G.Blasi, S.Jorstad, Y.Y.Kovalev, T.P.Krichbaum, A.Marscher, D.Paneque, G.Piner, et al.

The HSP blazar Markarian 421

Mrk421 is a nearby BL Lac object (z = 0.031) $P_{1.4GHz}^{-1}0^{24.27}$ Watt/Hz $D_{core}^{-0.06-0.12}$ mas (~1-2x10¹⁷cm)

It shows a jet structure oriented in North-West direction, starting from the core and extending for several tens of mas.

- HSP object.
- Detected by EGRET.
- It is a bright Fermi source.
- Multi-wavelength study by Abdo et al.

It is the first extragalactic object revealed in TeV band

Data set

VLBA obs. at 15, 24 and 43 GHz

12 epochs during 2011

in total and polarized intensity

VLBA (Very Long Baseline Array)

Main Goals

 Parsec scale analysis of the polarization structure and properties (core and jet region): fractional polarization, EVPAs, variability, Faraday rotation, limb brightening.

Multifrequency campaign

This study is part of a wider multifrequency campaign, with observations in:

sub-mm (SMA), opt./IR (GASP), UV/X-ray (Swift, RXTE, MAXI), and γ rays (Fermi-LAT, MAGIC, VERITAS).

The HSP blazar Markarian 421

Blasi+2013.

- ➤ Jet structure well defined and wellcollimated emerging from a compact nuclear region.
- The **jet** is oriented in North-West direction (PA ~-35°), and it extends over an angular distance of ~4.5 mas (about 2.67 pc @ z=0.03).
- ➤ The mean **flux density** of nuclear region is ~350 mJy.
- Detected only stationary components within the jet, by using obs. over a 12-month period.

Polarized intensity images

- The polarized emission extends for about 1 mas from the core region at 15 and 24 GHz.
- At 43 GHz we only detect polarized emission within the core region.
- The mean degree of polarization for the core is ~1%, while for the Jet ~15%.
- EVPAs have different behavior with time, frequency and jet location.

Polarization parameters: jet region at 15 GHz

- Total intensity lightcurve not so variable (F_{var}=0.09±0.04).
- \square The polarized flux is variable (F_{var} =0.48±0.11). but no evidence of enhanced activity.
- ☐ The mean degree of polarization for the Jet is ~15%.
- EVPAs quite stable around a value of about 55° (i.e. magnetic field parallel to the jet PA).

Polarization parameters: core region at 43 GHz

- There is a main peak in the total intensity lightcurve
- ☐ The polarized flux reaches a 12 mJy peak during the 3th observing epoch.
- ☐ The mean degree of polarization for the core is ~2%.
- EVPAs have a stable behavior with the time around 150° (i.e. magnetic field transverse to the jet PA).

Polarization parameters: core region at 15 GHz

- ☐ There is a main peak in the total intensity lightcurve.
- The polarized flux is not extremely variable $(F_{var}=0.40\pm0.09)$.
- The mean degree of polarization for the core is ~1%.
- EVPAs have different behavior with the time and they show two clear 90° flips

Linearly polarized intensity

Peak Total Intensity 0.3972 Jy/beam (noise at 0.85 mJy/beam - Noise Pol. 13.0% peak) Total Intensity Contours 0.42,0.82,1.60,3.13,6.13,12.00,23.49,45.98,90% of peak Beam FWHM 0.90x0.55 mas at 0.00 deg.

Relative Right Ascension (mas)

Interpretative framework

Jet region:

□ Stable EVPAs \rightarrow ~55° (i.e. perpendicular to the jet) \rightarrow parallel magnetic field.

- Velocity shear across the jet.
- Helical magnetic field with a pitch angle less than 45° (Wardle 2013).

Core region:

 \Box Stable EVPAs at 43 GHz → ~150° (i.e. parallel to the jet) → transverse magnetic field.

- Transverse shock.
- \square EVPA variability at 15 GHz \rightarrow opacity effect (...and variable Faraday rotation?)

A similar magnetic field configuration was revealed by Piner et & Edwards (2005).

Faraday rotation analysis

$$\chi_{\rm obs} = \chi_{\rm int} + RM \times \lambda^2$$

Time variable RM (from -3000 to +2000 rad m⁻²)

Higher variability at longer wavelenghts

 \diamond Intrinsic polarization angle less variable with respect the 15 GHz trend (F_{var} =0.10±0.04).

reflects the 43 GHz trend.

RM vs. accretion rate

$$RM = 812 \int n_e \mathbf{B}_{\parallel} \cdot dl \quad [\text{rad m}^{-2}]$$

$$\mathbb{R} \text{M time evolution}$$

$$\mathbb{R} \text{M time evolution}$$

$$\mathbb{R} \text{M time evolution}$$

$$\mathbb{R} \text{M time below the problem of the$$

- ❖ RM and core flux density → similar trend
- * RM variability related to changes in the accretion rate?

Limb brightening at 43 GHz

At 43 GHz in the inner part of the jet we clearly observe a **traverse EVPA distribution** and a **limb brightening structure** in the polarized emission.

Spine/layer polarization structure that seems to be a common feature in TeV blazars (e.g. Mrk 501)

Velocity shear → parallel magnetic field in the jet.

- Limb brightening structure.
- Low pol. degree in the core region.

Blend of sub-components within the beam.

Summary

- The source shows polarized emission (core and jet region).
- EVPAs have different behavior with the time, the frequency and the jet location.
- Higher variability at longer wavelenghts -> opacity effect + variable RM.

Jet region:

- ✓ Fractional polarization ~15%.
- ✓ Stable EVPAs \rightarrow ~55° (i.e. perpendicular to the jet) \rightarrow parallel magnetic field.

Core region:

- ✓ Fractional polarization ~1% at 15 GHz, ~2% at 43 GHz.
- ✓ Stable EVPAs at 43 GHz \rightarrow ~150° (i.e. parallel to the jet) \rightarrow transverse magnetic field.
- \checkmark EVPA variability at 15 GHz \rightarrow opacity and variable Faraday rotation.
- ➤ Similar trend for RMs and tot int light curve → accretion rate?

Thank You!

Lico+ 2014, A&A 571, A54 -- Blasi+ 2013, A&A 559, 75 -- Lico+ 2012, A&A 545, 117.