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- Extensive MW campaigns on Mrk421 and Mrk501
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The CHALLENGE of studying blazars

Many basic open questions... that persist since the 80s
— e.g. see Talk by Esko Valtaoja

From observational perspective, there are two major practical challenges
a) Blazars emit overa very wide energy range

(from radio to very high energy gamma-rays)
b) Blazar emission is variable on very different timescales

(from years down to minutes)

—>Need radio-to-gamma MW campaigns lasting many years
- Fermi-LAT provides “constant temporal coverage” for all
objects, but this does not occur at the other energy bands

— Not possible to do for many objects
—>Which objects should we study ?




Why studying Mrk421 and Mrk501 ?

- Bright blazars
— Easy to detect with IACTs, Fermi, and X-rays, Optical, radio instruments in short times
— “Relatively Easy” to characterize the entire SED in every “shot”
= Can study the evolution of the entire SED

- Nearby blazars (z~0.03; ~140 Mpc)

= Imaging with VLBA possible down to scales of <0.01-0.1 pc (<100-1000r,)
- Minimal effect from EBL (among VHE blazars), which is not well known
— systematics for VHE blazar science

- No strong BLR effects (another unknown... composition, shape...)
- Fewer additional uncertainties than in FSRQs

In summary:
- Mrk421 and Mrk501 are among the “easiest” blazars to study

It is more difficult to study other blazars that are farther away,
dimmer, or have more complicated structures

They can be used as high-energy physics laboratories to study blazars
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Why studying Mrk421 and Mrk501 ?
Mrk421 as possible source of PeV neutrinos and 30 EeV CR

See talk from P. Padovani See talk from A. Mastichiadis
(this conference) (this conference)
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Extensive MW Campaigns on Mrk421 and Mrk501

A multi-instrument and multi-year project

Since 2009, we have substantially improved TEMPORAL and ENERGY coverage of the sources
in order to obtain SEDs as simultaneous as possible, as well as to be able to perform multi-
frequency variability/correlation studies over a long baseline and correlate with high
resolution radio images and polarizations (to learn about the jet structure)

Radio: VLBA, OVRO, Effelsberg, Metsahovi...
. mm: SMA, IRAM-PV
*More than 25 instruments Infrared: WIRO, OAGH

participate, covering Optical: GASP-WEBT, GRT, Liverpool, Kanata...

frequencies from radio to VHE | UYV: Swift-uvoT
X-ray: (RXTE), Swift-XRT, NuSTAR
Gamma-ray: Fermi-LAT

VHE: MAGIC, VERITAS, FACT

Monitored regardless of activity (increase coverage during flares)
= observed every few days for about half year (every year!)

David Paneque 6




Extensive MW Campaigns on Mrk421 and Mrk501

LHC VS Mrk421/Mrk501
ATLAS/CMS MAGIC/VERITAS/Fermi
LHCb + Alice NUSTAR/Swift + Optical + radio

BEAM

LHC comes with “adjustable knobs” (controlled environment) and measure the
interactions directly; while for Mrk421/Mrk501 we only can observe it in an indirect
way (through secondary products) and aim at identifying when the “knobs changed”

In both cases we learn many things by using these “extreme particular accelerators”;
and surely that requires “observing” over many years in order to integrate over

sufficient data/effects.



Extensive MW Campaigns organized on Mrk421/Mrk501

Mrk421 (Jan19th, 2009-Jun1st,2009: 4.5 months)- Planned observations: every 2 days
Mrk501 (Mar15t", 2009-Aug15t,2009: 4.5 months) -Planned observations: every 5 days
Mrk421 (Dec8, 2009-Jun20,2010: 6 months)- Planned observations: every 1-2 days

Mrk421 (Decl, 2010-Jun15,2011: 6 months)- Planned observations: every 2 days
Mrk501 (Marchl, 2011-Sep1,2011: 6 months) -Planned observations: every 3 days

Mrk421 (Dec23, 2011-May31,2012:5.5 months)- Planned observations: every 2 days
Mrk501 (Feb15,2012-June31,2012:4.5 months) -Planned observations: every 4 days
Mrk421 (Dec, 2012-May,2013: 6 months)- Planned observations: every 2 days
Mrk501 (April, 2013-Sep,2013: 5 months) -Planned observations: every 4 days
Mrk421 (Dec, 2013-May,2014: 6 months)- Planned observations: every 2 days
Mrk501 (March, 2014-Aug,2014: 5 months) -Planned observations: every 3 days
Mrk421 (January, 2015-June ,2015: 6 months)- Planned observations: every 2 days

Mrk501 (March, 2015-June ,2015:4 months)- Planned observations: every 5-10 days
Mrk421 (Dec, 2015-June ,2016: 6 months)- Planned observations: every 2 days

Mrk501 (March, 2016-Sep,2016: 6 months)- Planned observations: every 4 dayss Current



As we collect MW data on Mrk421/Mrk501 we learn new things about
them, which led to several publications with data from single
campaigns (and often with only a small fraction of the campaign data)

So far we have 12 publications:

Lico R, et al, 2012, A&A, 545, 117 —
Blasi, M.G., et al, 2013, A&A, 559,75
Lico, R. et al., 2014, A&A, 571, 54

— 4 with small dataset
(focused on radio)

Koyama, S., et al., 2015, PASJ, 164 _—

Abdo, A. A. et al. 2011, ApJ, 727, 12
Acciari, V. A. et al. 2011, ApJ, 729, 2
Abdo, A. A. et al. 2011, ApJ, 736, 131

Aleksic et al, 2015, A&A 573, 50 >_ 8 with extensive MW

Aleksic et al., 2015, A&A 575, 128
Aleksic et al., 2015, A&A 578, 22

Furniss et al. 2015, ApJ 812, 65

Balokovic et al. 2016, ApJ, 819,156 ___—

+ Additional papers coming soon...

dataset (includes TeV)



As we collect MW data on Mrk421/Mrk501 we learn new things about
them, which led to several publications with data from single
campaigns (and often with only a small fraction of the campaign data)

So far we have 12 publications:

LicoR, et al, 2012, A&A, 545, 117 —
Blasi, M.G., et al, 2013, A&A, 559,75

Lico, R. et al., 2014, A&A, 571, 54

Koyama, S., et al., 2015, PASJ, 164 _—
Abdo, A. A. et al. 2011, ApJ, 727, 129
Acciari, V. A. et al. 2011, ApJ, 729, 2
Abdo, A. A. et al. 2011, ApJ, 736, 131 . .
Aleksic et al, 2015, A&A 573,50 — 8 with extensive MW

Aleksic et al., 2015, A&A 575, 128 dataset (includes TeV)
Aleksic et al., 2015, A&A 578, 22

Furniss et al. 2015, ApJ 812, 65
Balokovic et al. 2016, ApJ, 819, 156

—> Large fraction of results reported in this talk relate to this paper.

— 4 with small dataset
(focused on radio)




* Some highlight results from the campaigns
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SED peak positions shifted to lower energies by factor ~10
Peak position at ~1016 Hz (~40 EV) -Abdo et al., 2011, Apl 736, 131

First time we see such big shift (typical state)
= “HBL moving towards IBL”
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SED peak positions shifted to lower energies by factor ~10

Peak position at ~1016 Hz (~40 EV) -Abdo et al., 2011, Apl 736, 131
(typical state)

First time we see such big shift
- “HBL moving towards IBL”
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SED peak positions shifted to lower energies by factor ~10

Peak position at ~1016 Hz (~40 EV) -Abdo et al., 2011, Apl 736, 131
(typical state)

First time we see such big shift Spectrum can be

- “HBL moving towards IBL” described with a

10 GHz 0+UV | 10 keV. 1GeWl 1Tey ONE-zone SSC model
—F

1 1 i 1
- Balokovic etal., 2016
| ApJ 819,156
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Remember: Large intra-model and inter-model
degeneracy for fitting single broadband SEDs

Mrk421 SED described with a
Leptonic scenario
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Figure 11. SED of Mrk 421 with two one-zone SSC model fits obtained with
different minimum variability timescales: t,,, = 1 day (red curve) and #,,, = 1
hr (green curve). The parameter values are reported in Table 4. See the text for
further details.

Mrk421 SED described with a
Hadronic scenario
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Figure 9. Hadronic model fit components: 7°-cascade (black dotted line), 7+
cascade (green dash-dotted line), u-synchrotron and cascade (blue triple-dot-
dashed line), and proton synchrotron and cascade (red dashed line). The black
thick solid line is the sum of all emission components (which also includes the
synchrotron emission of the primary electrons at optical/X-ray frequencies).
The resulting model parameters are reported in Table 3.

Abdo et al., ApJ 736 (2011) 131

Multi-band variability is key to distinguish between models
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NuSTAR X-ray LC (during tens of hours) on Mrk421 with ~30-50% peak
to peak variations is similar to multi-instrument optical LC on
0716+714 during 78 hours
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In both cases, these LCs suggest a superposition of
emission from various regions
— During strong flares, a single region may dominate



X-ray spectral shape vs. flux

NuSTAR spectra
(2013 campaign)

RXTE-PCA spectra from

Giebels et al., 2007, A&A, 462, 29

54l X-ray spectra fltte
broken power law, wi h |
"Gamma_1and Gamm
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X-ray spectral shape vs. flux
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Saturation brighter Saturation
at low fluxes| (typical behaviour) | at high fluxes
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X-ray spectral shape vs. flux Harder when brighter

also observed in optical
Harder when (See poster by

Saturation brighter Y. Troitskaya, this conf.)
alt IowquxesF (typical behaviour) |

[ Balokovic et al.,
i 2016 ApJ 819, 156
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Variability vs. Energy
Variability quantified following prescription from Vaughan et al. 2003
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Variability vs. Energy

Variability quantified following prescription from Vaughan et al. 2003
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Variability vs. Energy  -Abdoetal., 2011 (ApJ 736, 131)
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“Falling segments” of the low- and high-energy bumps are more
variable than the “rising segments” (ALWAYS!!)
- Within the Synchrotron self-Compton scenario, the X-ray and
VHE emission is produced by the highest-energy electrons
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F..r With energy and the hardening of the X-ray spectra with
increasing flux suggest that the variability in the emission of Mrk 421
is produced by chromatic changes in the electron energy
distribution, with the highest-energy electrons varying the most.

The saturation of the X-ray spectral shape at the extremely high and
low X-ray fluxes indicates that, for these periods of outstanding
activity, the flux variability is instead dominated by other processes
that lead to achromatic variations in the X-ray emission

= Mrk421 has “many personalities”...



Correlations
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log (>200 GeV flux [ 107 s cm™2 ])

Correlations

Clear correlation between X-rays and VHE fluxes (on even lower flux)
— Correlation on strictly simultaneous observations and nightly averages

=> There is a change in slope with the X-ray energy band considered
- Linear behaviour with soft X-rays (inverse-Compton scattering in Klein-Nishina)
- Less than linear with the hard X-rays (7-30 keV)

- The super-high energy electrons contribute less to >200 GeV flux
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Correlations

Balokovic etal., 2016

ApJ 819, 156

0.3—-3 keV flux

normalized Swift/XRT
B a N WO g

normalized Fermi-LAT
0.2—-100 GeV flux

1 1 1 1 1 | 1
1.0 1.2 14 1.6 1.8 2.0 2.2
normalized UVW1-band flux

X-ray and UV fluxes do NOT correlate

Lack of overall correlation optical/X-ray is common

in 2009 (Aleksic et al., 2015, A&A 575, 128),

In 2010 (Aleksic et al., 2015, A&A 578, 22)

In 2007-2009 (Ahnen et al 2016, arXiv:1605.09017)
In 2007-2015 (See Poster from M.I. Carnerero)

= Two different components
OR
—> Variability mostly on high-E electrons
— Low-E electrons vary independently

Marginal correlation (2.5-3 sigma) of Fermi

GeV and UV fluxes

- Expected from SSC models, where both optical/UV
and MeV/GeV fluxes are related to low energy electrons



Correlations

Correlation between radio (VLBA 43 GHz) and gamma (>0.1 GeV)
also detected for Mrk421 during non-flaring (but variable !1) activity

T T T

- Lico et al., 2014

e (A&A 571, 54)
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Fig. 7. Discrete cross-correlation function between the y-ray and
the 43 GHz radio light curves (black curve). The gray curves rep-
resent the 99.7% confidence limits relative to stochastic variability,
obtained from the combination of different power spectral density
slopes. See section 3.5 for more details. 30



Correlations

Correlations Radio/optical/GeV and X-ray/TeV
on months timescales during non-flaring activity

- Naturally explained with leptonic scenarios

-2 Difficult with lepto-hadronic with Psync
— Possible with lepto-hadronic with photo-pion
—But then we need to keep an eye on the energetics



Comparison of variability between the two
archetypical TeV blazars: Mrk421 vs. Mrk501

Balokovic etal., 2016 ApJ 819, 156

Hughes et al., ICRC 2015
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Typically:

Frequency [Hz]

Fvar (Mkrd421): clear double-peaked structure, Fvar (X-rays) ~ Fvar(VHE)
Fvar (Mrk501): monotonicincrease with energy, Fvar(X-rays) < Fvar(VHE)
— See further details in the Poster of Pepa Becerra (this conference)

David Paneque
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Flaring activity with ejection of VLBA blobs

=0 | Mrk421 regularly monitored with VLBA (Boston + Bologna groups)

1Aug 10

Talk by Lico reported VLBA measurements in 2011 (steady components)

But in 2010, VLBA components K1 and K2, traced back to the VLBA
core in January and March 2010
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no

Flaring activity with ejection of VLBA blobs

Mrk421 regularly monitored with VLBA (Boston + Bologna groups)
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Talk by Lico reported VLBA measurements in 2011 (steady components)

But in 2010, VLBA components K1 and K2, traced back to the VLBA
core in January and March 2010, coinciding with the flaring activities
in 2010 January and March (but NOT with the BIG Flare in February)

Correlation between flaring activity and “ejection” of VLBA blobs
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X-ray Spectral Index

Mrk501 suffers a personality crisis (in 2012)

* VERY hard spectral index, regardless of activity (during MW 2012)
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Mrk501 has shown X-ray and VHE spectral variability during flares

(Historical) flare in 1997

Tavecchio et al., 2001, ApJ 554,725
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(fast variability) flare in 2005
Albert et al., 2007, ApJ 669,862
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Hard spectra in Mrk501 not observed during low states, and
VHE spectral index NEVER observed harder than 2 (until year 2012)




Mrk501 suffers a personality crisis (in 2012)

* VERY hard spectral index, regardless of activity (during MW 2012)

X-ray r>-2 Hughes et al.,

Typical Mrk501 VHE
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PL Index ~ 2.5
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- Mrk 501 behaved like Extreme HBL! Being "extreme HBL"

Similar X-ray/VHE spectra as may be a temporal state,

1ES 0229+200. 1ES 0347-121 rather than an intrinsic
’ characteristic of a blazar.




3 — General Conclusions

The MW campaigns on Mrk421 and Mrk501 are a multi-year AND
multi-instrument program that is running since 2009.
Deepest Temporal and Energy coverage of any TeV object

- Many interesting (novel) results - \’;

— Large complexity in the temporal evolution of
the broadband SED.
- Complicated personalities. e.g.:

Mrk421: trying to become ISP

Mrk501: became EHBL (in2012)

During non-flaring activity

- Does it occur on other blazars?

- Impact for Blazar Sequence ?

K
p
& )

We can use Mrk421 and Mrk501 as
our blazar physics laboratory

Lessons learnt might be applied to
other blazars (farther away or weaker)



