Millimeter VLBI of NGC1052: Pinpointing a Supermassive Black Hole

Anne-Kathrin Baczko^{1,2,3}

In Collaboration with: R. Schulz ^{2,3,4}, E. Ros ^{3,4}, M. Kadler ¹, M. Perucho ⁴, J. Wilms ¹ ¹ MPIfR, Bonn; ² Remeis Obs. Bamberg & ECAP Erlangen; ³ Univ. Würzburg; ⁴ Univ. València;

⁵ ASTRON, Dwingeloo, NL

May 31, 2016

ASTRO WÜRZBURG

Table of Contents

Introduction - the LINER galaxy NGC 1052

Pesults – mm VLBI observations of NGC 1052

- 86 GHz : Twin-jet with highest resolution
- 43 GHz : Kinematics of NGC 1052
- 86 GHz : Magnetic field estimate

	NGC1052	M87
Distance	\sim 20 Mpc	\sim 16.7 Mpc
BH mass	$M\sim 10^{8.2}M_\odot$	$M\sim 10^{9.8}M_\odot$ $^{(*)}$
Inclination angle	close to 90 $^\circ$	15 – 25° ^(**)

(*) Gebhardt & Thomas 2009 (ApJ 700,1002), (**) Acciari et al. 2009 (Science 325,444)

Baczko et al. 2016 (A&A in press, ArXiv 1605.0700) Emission region $< 200\,{
m R_S}$

Hada et al. 2011 (Nature 477,185): Central engine within 14–23 R_S of the 7mm-core

Anne-Kathrin Baczko (MPIfR)

Pinpointing a Supermassive Black Hole

Radio properties of NGC 1052

Kadler et al. 2004 (A&A 426, 481)

The Global mm-VLBI Array (GMVA)

Observation on 9/10 October 2004

First detection of the twin-jet system of NGC 1052 at 86 GHz

Baczko et al. 2016 (A&A in press)

Uniform weighted beam: $(353 \times 58) \ \mu as^2 \rightarrow$ resolution in east-west direction: 6.5 ltd

The Morphology at 86 and 43 GHz

Tapered image at 86 GHz October 2004

Stacked image at 43 GHz 2005-2009

Anne-Kathrin Baczko (MPIfR)

Detailed analysis at 43 GHz

Examples from 4 years of observation with the VLBA (2005-2009)

Detailed analysis at 43 GHz

Examples from 4 years of observation with the VLBA (2005-2009)

Tracking Moving Emission Features

Tracking Moving Emission Features

Tracking Moving Emission Features

Mean jet velocities: β_{western} = 0.36 \pm 0.03, β_{eastern} = 0.56 \pm 0.03

Anne-Kathrin Baczko (MPIfR)

Anne-Kathrin Baczko (MPIfR)

Core size estimate

Modelfit unresolved

Core size estimate

- Modelfit unresolved
- 1/2 th beam: 30 μas
- 1/5 th beam: 12 μas
- Based on SNR: 8 µas Lobanov (2005)
- Smallest possible: $4 R_{\rm S} = 0.6 \mu as$

Magnetic field estimates (0.6 μ as < 2 d < 30 μ as)

Electrons loose energy while radiating: \rightarrow synchrotron losses

$$\left(\frac{\mathrm{d}\gamma}{\mathrm{d}t}\right) = -\frac{4}{3}\sigma_T \frac{u_B}{m_e \cdot c} \gamma^2 \beta^2 , \qquad (2.1)$$

ightarrow Gives cooling time of electrons : t_c = 5.4 imes 10⁶ imes $B^{-3/2}$ [G^{-2/3}] s

Magnetic field needed for observed synchrotron cooling

$$B_{\rm sc, d} = \left(\frac{d[\rm cm]}{\beta \, [\rm cm \, s^{-1}] \times 5.4 \times 10^6 \, \rm s}\right)^{-2/3} \, \rm G, \qquad (2.2)$$

Assuming $B \propto r^{-1}$ for $d > 2 R_{\rm S}$ & $B \propto r^{-2}$ for $d < 2 R_{\rm S}$

$$B_{
m Sc, 1}R_{
m S} \propto d^{1/3}$$
 (2.3)

$\textbf{Core size} \rightarrow \textbf{Magnetic field}$

- 1/2 th beam: 30 μas
- 1/5 th beam: 12 μas
- Based on SNR: 8 µas Lobanov (2005)
- Smallest possible: $4 R_{\rm S} = 0.6 \mu as$

At
$$1R_{\rm S}$$
: $B_{{
m Sc},\,1R_{
m S}} \propto d^{1/3}$
 $\Rightarrow \ {
m 200~G} < {
m \textit{B}}_{{
m Sc},\,1R_{
m S}} < 8 imes 10^4 \ {
m G}$

Baczko et al. 2016 (A&A in press, ArXiv 1605.0700)

Outlook – including ALMA – including space VLBI

- Good resolution in E-W direction
- Adding baselines in N-S direction
- \Rightarrow Better transversal resolution

Outlook - including ALMA - including space VLBI

Anne-Kathrin Baczko (MPIfR)

Outlook - including ALMA - including space VLBI

- Good resolution in E-W direction
- Adding baselines in N-S direction
- ⇒ Better transversal resolution

Outlook - including ALMA - including space VLBI

- Adding baselines in N-S direction
- ⇒ Better transversal resolution
- \Rightarrow Test jet formation and collimation on scales of lightdays

ALMA

UV Coverage for alma-nac