
1Blazars, Malaga, 2016

Magnetic Field and Polarization in AGN 
Jets

Robert Laing (ESO)

.... or what, if anything, can people who work on blazars learn 
from someone who observes and models kiloparsec-scale jets?
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People who work on Large-scale Jets?
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But first a word from my sponsors

PKS0637-752
ALMACAL, 230 GHz
Oteo, Zwaan

+
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Radio Galaxy 3C31
(RL et al. 2008)

FRI jets: Low-luminosity
               Deceleration
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FRII Jets: powerful  and fast
3C334: Bridle et al.
FRII Jets: powerful  and fast
3C334: Bridle et al.

But how fast?
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Bipolar relativistic jets

Flux density in observer's frame at frequency ν

S(θ,ν) = D2+α∫ ε'(θ,ν) dV/d2

Doppler factor

D
j
 = [Γ(1- βcosθ)]-1  (approaching)

D
cj
 = [Γ(1+ βcosθ)]-1  (receding)

sin θ' = D sinθ

Approaching jet is brighter The two jets are observed at different 
angles to the line of sight in the flow rest frame θ'

Polarization depends on θ' – different in the two jets
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Jet Models
 What distributions of flow velocity, field geometry and rest-

frame emissivity are consistent with observations?
 Observe:

 Deep, high-resolution radio images; IQU, corrected for 
Faraday rotation

 Assume:
 Symmetrical, axisymmetric, stationary, relativistic flow

 Power-law energy distribution, optically-thin synchrotron

 Parametrised model of:
 Geometry

 Velocity field in 3D

 Emissivity

 Magnetic-field component ratios

 Calculate I, Q, U; optimise

Compare approaching 
and receding jets

Polarization is crucial!
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NGC6251: a transition case

Giant radio galaxy NGC6251 
(z=0.0247;1.8 Mpc projected)

JVLA 4.5-6.5 GHz
BCD configurations (33 hr)
1.25 arcsec FWHM
1.1μJy/beam IQU
Peak/rms = 520000
I: CASA MFS Taylor term 0

Second-order D terms
Delay quantization
Core variable in spectral index
as well as flux density
Faraday rotation across the
band
Beam squint
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Total Intensity
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Looking deeper

Flying saucer
NGC6252

Primary
beam
problems
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Model Fits: I

 

Total Intensity: θ = 30o
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Model fits: sidedness ratio

Sidedness ratio
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Model fits: B vectors
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Model fits: Q/I

Parallel apparent field                Perpendicular apparent field
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Velocity and Magnetic Field

Independent longitudinal velocity profiles for spine and layer
No transverse variation in either component

Spine β ≈ 0.99 (Γ ~ 7) decelerating to β ≈ 0.89 (Γ ≈ 2.2)
Layer β ≈ 0.40 (Γ ≈ 1.1)

B field in both evolves from longitudinal to toroidally dominated.
Many local variations (knots and filaments)
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How does NGC6251
compare with 
FRI jets?

Laing & Bridle (2014) Differences:

FRI jets:
- expand rapidly
- decelerate from
Γ≈2 to Γ≈1

Similarities:

- Longitudinal →
toroidal field
- Transverse 
velocity
gradients

10 radio galaxies
0.015 < z < 0.05
Low-power, FRI
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FRI jet velocities: deceleration
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Fractional magnetic field components
Longitudinal                             Toroidal
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Consistency Test 1: 
Faraday Rotation Asymmetries
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Consistency test 2: core fraction

Core is the optically-thick
base of the jet

Assume intrinsic ratio of
core/extended emission is
constant

Doppler beaming causes
observed ratio f to be 
anticorrelated with θ
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Conclusions

 Clear evidence for a fast spine and slow layer in one transition 
source, NGC6251 – but not extreme enough for iCCMB

 Best fitted as two discrete components

 Spine Γ ~ 7, decelerating to Γ ≈ 2.2 by 25 kpc

 Layer Γ ≈ 1.1 everywhere

 Narrow: 2.30 → 1.5o half-opening angle in jet frame

 In contrast, FRI twin jets decelerate rapidly (Laing & Bridle 
2014)

 Γ ≈ 2 at the flaring point

 Rapid expansion followed by deceleration and recollimation

 Develop smooth transverse velocity gradients 
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