PROTON ACCELERATION IN BLAZAR JETS

A. Mastichiadis University of Athens

TALK OUTLINE

- Hadronic Models: key ideas and processes
- Multiwavelength fits
- BL Lacs as IceCube neutrino sources
- Jet Energetics
- Box Model for shock acceleration

In collaboration with

- Maria Petropoulou Purdue University (Einstein Fellow)
- Stavros Dimitrakoudis University of Alberta

MODELS FOR H.E. EMISSION

PHYSICAL PROCESSES

SPECTRAL FORMATION: THREE DIFFERENT APPROACHES

- 1. Use a 'tailor-made' particle distribution function + textbook emissivities
 - Very good fits
 - Some ad-hoc assumptions (e.g. multiple breaks)
- 2. Create particle distribution functions from injection rates \rightarrow kinetic equations
 - Self-consistency (energy conserved)
 - Temporal studies (flaring)
 - Injection rates? (e.g. functional form)
- 3. Use acceleration scheme \rightarrow injection rates
 - More consistency (functional form of injection: power-laws, cutoffs)
 - Simplified acceleration schemes

Extra complications:

- Radiative transfer?
 - Hadronic rates (secondary injection)

complexity

Protons:

SED OF Mrk 421: LEPTO-HADRONIC MODELS

	V-Xrays	γ-rays
LH-π model	e-syn	photopion
LH-s model	e-syn	p-syn
		N.
	LH-π	LH-s
Dominant energy density	Protons	B-field
Maximum proton energy	~PeV	~EeV

AM, M. Petropoulou, S. Dimitrakoudis 2013

PHOTOPAIR vs PHOTOPION

Both processes involve protons and photons

Photopair

$$N + \gamma_{target} \longrightarrow N + e^+ + e^-$$

 $s^{1/2}_{threshold} = m_p + 2m_e^-$

Photopion

$$N + \gamma_{target} \longrightarrow N + \pi s + ...$$

 $s^{1/2}_{threshold} = m_p + m_{\pi 0}$

	photopair	photopion		¹⁰ 9 -
Threshold (PRF) (MeV)	~1	~140	-log f	8 - β=0.1 7 - 6 -
Cross section (mb)	~10	~0.1		5 - 4 - 3 -
Inelasticity	~0.001	~0.1		2 4 4.5 5 5.5

INJECTION OF SECONDARY ELECTRONS -RESULTING PHOTON SPECTRA

- Energy lost from protons = Energy injected in secondaries
 = Energy radiated in photons
- Photopair injection spectrum different from photopion
 → the two processes have inherently different radiative signatures

A SIMPLE CASE

injected electrons

photons

SIGNATURES OF BETHE-HEITLER PAIRS IN MW BLAZAR SPECTRA

LH-π model:

- Radio X-rays: electrons
- Hard gamma-rays: photopion
- Soft gamma-rays: photopair

If such a feature is ever observed

2-20 PeV neutrinos → IceCube

MJD 55265-55277

Petropoulou et al. 2016

MODEL SIGNATURES: NEUTRINO EMISSION

Due to differences in fitting parameters •LH π model: PeV neutrinos with high flux \rightarrow IceCube •LHs model: EeV neutrinos with low flux

MODEL SIGNATURES: COSMIC RAYS

LHs model: Mrk 421 CR peak at ~30 EeV

Small UHECR contribution from nearby
BL Lac objects if similar to Mrk 421
Lower luminosities
Larger distances

BL Lac – IceCube EVENTS ASSOCIATION?

The facts

- IceCube: 54 events 0.03 2 PeV (Aartsen et al 2013,2014)
- Background or point sources?
- 8 possible associations between Bl Lac – IceCube events (Padovani & Resconi 2014)
- 6 (out of 8) BLLacs with good quality observations

The challenges

- 1. Can hadronic models (LHπ) fit the SED of these blazars? (sources not a-priori selected!)
- Is the associated neutrino flux compatible with IceCube detections? (tailor-made: SED fit → source parameters → neutrino flux)

IceCube ID	Counterpart(s)	Class	Catalogue(s)
9	MKN 421	BL Lac (HSP)	TeVCat/WHSP
10	H 2356-309	BL Lac (HSP) BL Lac (HSP)	TeVCat/WHSP TeVCat/WHSP
17	PG 1553+113	BL Lac (HSP)	TeVCat/WHSP
19	1RXS J054357.3-553206	BL Lac (HSP)	WHSP
20	SUMSS J014347-584550	BL Lac (HSP)	WHSP
22	1H 1914-194	BL Lac (HSP)	WHSP
27	PMN J0816-1311	BL Lac (HSP)	WHSP

Padovani & Resconi 2014

Talk of P. Padovani

BAT (2004-2010) 1FGL (2008-2009) 2FGL (2008-2010) 2FGL (2008-2010) HESS (2004-2007)

45.5

45

44.5

43.5

43

42.5

42

ero/s 44

÷

8

H 1914-194

H 2356-309 (ID 10)

Mrk 421 (ID 9)

1ES 1011+496

46.5

46

45.5

45

44.5 Ļ

43.5

43

32

8 44

16

Petropoulou et al 2015

log v (Hz) H 2356-309

ve+v

_

•

IC neutrino 10 BeppoSax (1998)

WISE XMM (2007) BAT (2004-2008)

log_E (eV)

leptonic + pe leptonic + pπ

all processes

-2 0 2 4 6 8 10 12 14 16

-10

-10.5

-11

-11.5

-12

-13

-13.5

-14 10 12 14 16 18 20 22 24 26 28 30 32

NP. PO -12.5 leptonic

De

πn

OVERALL ENERGETICS

- Simple one-zone synchrotron hadronic
 fits can be degenerate → different sets
 of parameters give same fits.
- Minimize the power (similar to equipartition arguments in radio sources with gamma-rays replacing radio and protons replacing electrons) (*Petropoulou & AM 2012*)

$$\mathbf{P}_{\rm jet} \approx \pi \mathbf{R}^2 \Gamma^2 \mathbf{c} (\mathbf{u}_{\rm p} + \mathbf{u}_{\rm B})$$

$$P_{jet} \approx \pi R^2 c \left[A(\delta.B)^{-3/2} + \frac{(\delta.B)^2}{8\pi} \right]$$

$$\frac{dP_{jet}}{dB} = 0 \Longrightarrow P_{jet,min} \text{ for } \delta.B = C$$

3C273

Petropoulou & Dimitrakoudis 2015

A PARADIGM: BOX-MODEL FOR PARTICLE ACCELERATION

Standard box model

Modified box model

CONCLUSIONS

- One-zone hadronic model
 - Accurate secondary injection (photopion + Bethe Heitler)
 - Time dependent energy conserving PDE scheme

Two brands of hadronic models for AGN MW emission:

- LH π : γ -rays from photopion + EM cascade (more energetically demanding)
- LHs : γ-rays from proton synchrotron (requires acceleration to higher proton energies)
- Both fit MW equally well $LH\pi$ predicts a Bethe-Heitler hump at MeV energies

• BL Lac - IceCube neutrino events correlations: successful MW fits using the LH π model of 6 sources \rightarrow neutrino flux and energy very close to the one measured

Overall energetics: High energy requirements somehow relaxed with equipartition

Box model for shock acceleration: Acceptable fits for 'standard' values.
If tacc/tesc not constant but a (weak) function of energy:
Good fits to observations + more relaxed energy requirements

BACK UP SLIDES

VARYING THE INJECTION LUMINOSITY

Assume small amplitude random-walk variations in proton and electron injection

Injection and spectra when p and e totally correlated

PHOTOPION vs P-SYN: TIME VARIATIONS

Correlated: no time lag Correlated: time lag of 80 tcr Uncorrelated

Photopion:

When electrons-protons are correlated, TeV (hadronic) and X-rays (leptonic) vary quadratically Even when electronsprotons totally uncorrelated, X and TeV retain some correlation

P-syn:

When electrons-protons totally correlated, X and TeV linear. When uncorrelated, all X-TeV correlation is lost.