THE SEARCH FOR BLAZAR-LIKE, RADIO LOUD NARROW-LINE SEYFERT 1 GALAXIES

H. Richard Miller Georgia State University

B2 1702+457

Image credit: H. R. Miller

<u>Quote</u> Who, When, and Where??

- Variability timescales provide limits on the size of the emitting region "...unless there is relativistic bulk motion of the emitting material."
- "Among the most distressing observations that astronomers have made in recent years are those of the extremely rapid flux variations and apparent faster-than-light structural changes in an increasing number of compact extragalactic radio sources."

Collaborators

- Joseph Eggen
- Jeremy Maune
- Clay Turner
- Diana Gudkova
- Elizabeth Ferarra

Observations

Table 2.2: Summary of Optical Data by Telescope

(Number of allocated nights are in parentheses)

Telescope	Observing Nights	Observations
Whole Sample	285	11,920
Lowell 31"	80 (169)	3,903
Lowell 42"	57 (91)	3,678
Lowell 72"	68 (151)	4,183
SMARTS 1.3m	138	156

Motivation

- A small number of vRL NLSy1 galaxies in the Yuan et al. (2008) sample have been identified as gamma sources with Fermi.
- Are there more vRL NLSy1s that emit gamma-rays? (Reminds one of the early days of BL Lac Object studies)
- What are their properties?
- Do they form another class of blazars?

Goals

- Monitor the Yuan et al(2008) and Komossa et al(2006) sample of vRL NLSy1s (34) for optical flux and polarization variability.
- Select candidates from the sample based upon blazar-like optical flux and polarization variations (including microvariability).
- How do the properties of the selected vRL NLS1s compare to those of blazars?

Gamma Ray Emission

- Key element in demonstrating blazar-like character
- Normally requires TS > 25, Eggen (2014), Eggen, Miller, Maune(2016)
- Provisional identification with 9 < TS < 25;Eggen (2014),Eggen, Miller, Maune(2016) if also accompanied by the following properties:
 - Optical Variability (and microvariability)
 - Strong/variable optical polarization
 - Positional coincidence with strong radio source

Sample collected from Yuan et al.(2008) and Komossa et al.(2006)

Object ID	R.A.	Dec.	Z	log(R)
J0100-0200	01:00:32.22	-02:00.46.00	0.227	1.77
IRAS 01506+2554	01:53:28.262	26:09:39.232	0.326	1.40
1H 0323+342	03:24:41.16	34:10:45.86	0.063	2.50
J0706+3901	07:06:25.12	39:01:51.55	0.086	1.21
J0723+5054	07:23:02.33	50:54:48.00	0.203	1.29
J0744+5149	07:44:02.28	51:49:17.50	0.460	1.62
J0804+3853	08:04:09.240	38:53:48.829	0.211	1.18
J0849+5108	08:49:57.977	51:08:29.023	0.583	3.16
IRAS 09426+1926	09:45:29.22	19:15:48.70	0.284	1.56
PMN J0948+0022	09:48:57.317	00:22:25.511	0.584	2.93
J0956+2515	09:56:49.874	25:15:16.196	0.712	3.56
J1038+4227	10:38:59.582	42:27:42.213	0.220	1.30
J1047+4725	10:47:32.688	47:25:32.010	0.800	4.09
J1102+2239	11:02:23.383	22:39:20.686	0.453	1.28
J1140+4622	11:40:47.897	46:22:04.791	0.115	1.36
J1146+3236	11:46:54.289	32:36:52.384	0.465	2.19
J1227+3214	12:27:49.14	32:14:59.00	0.137	2.16
J1246+0238	12:46:50.20	02:40:16.00	0.091	2.38
J1333+4141	13:33:45.469	41:41:27.656	0.225	1.06
J1358+2658	13:58 45.371	26:58:08.483	0.330	1.11
J1405+2657	14:05:04.803	26:57:27.539	0.713	1.09
J1421+2824	14:21:14.057	28:24:52.899	0.538	2.14
J1435+3132	14:35:09.502	31:31:47.971	0.502	2.98
J1443+4725	14:43:18.558	47:25:56.663	0.703	3.03
PKS 1502+036	15:05:06.477	03:26:30.796	0.411	3.53
RX 16290+4007	16:29:01.306	40:07:59.941	0.272	1.61
J1633+4718	16:33:23.57	47:18:58.83	0.116	2.19
J1644+2619	16:44:42.534	26:19:13.305	0.145	2.73
B3 1702+457	17:03:30.41	45:40:47.08	0.061	2.01
J1709+2348	17:09:07.810	23:48:37.760	0.254	1.06
J1713+3523	17:13:04.462	35:23:33.646	0.083	1.05
IRAS 20181-2244	20:21:04.064	-22:35:25.775	0.185	1.57
J2314+2243	23:14:55.89	22:43:22.69	0.169	1.25

Object ID	R.A.	Dec.	$\log(R)$	Bin $\#$	TS	$\operatorname{Flux}(\operatorname{err})$
1H 0323+342	51.2096	34.143	2.50	53	280.31	36.19(2.73)
J0849+5108	132.492	51.1414	3.16	35	790.76	26.34(2.20)
J0948+0022	147.221	0.349773	2.93	53	402.14	39.81(2.32)
J0956 + 2515	149.208	25.2545	3.56	20	95.95	10.24(2.34)
J1443+4725	220.827	47.4324	3.03	49-53	27.81	1.49(0.06)
PKS 1502 $+036$	226.292	3.40703	3.53	43	36.60	9.58(2.71)
J1644+2619	251.177	26.3204	2.73	46-50	52.25	4.24(1.04)
PKS 2004-447	301.98	-44.579	3.80	13-24	53.77	2.26(0.52)

Object ID	R.A.	Dec.	$\log(R)$	Bin $\#$	TS	$\operatorname{Flux}(\operatorname{err})$
J0100-0200	15.1342	-2.01278	1.77	8	9.65	5.87(0.56)
				25	9.52	3.17(2.23)
J0706 + 3901	106.605	39.031	1.21	23	10.30	0.76(.15)
				66	10.50	1.10(0.36)
J0804 + 3853	121.038	38.8969	1.18	34-36	10.77	8.49(0.15)
J1102 + 2239	165.597	22.6558	1.28	15-20	14.57	1.29(0.81)
J1146 + 3236	176.726	32.6145	2.19	5	12.61	3.58(1.66)
J1246 + 0238	191.709	2.67123	2.38	55-66	17.13	1.58(0.60)
J1713 + 3523	258.269	35.3926	1.05	22	12.03	6.21(0.23)
IRAS 20182-2244	305.268	-22.5884	1.57	9	9.42	2.24(1.89)
J2314 + 2243	348.732	22.7236	1.25	50	11.59	5.05(2.54)

BL Lac Objects(BA): Strittmatter et al(1972) Featureless opt. spect. Non-thermal SED Highly variable on all observed timescales and wavelengths Polarized optical emission Radio loud and many detected in gamma-rays

Image: J1102+2239

What are Radio-Loud NLSy1?

• Radio-Loud: $R \ge 10$ (where $R = f_{1.4 \text{ GHz}} / f_{4400 \text{ Å}}$) (Kellerman et al., 1989)

- Very Radio Loud: $R \ge 100$ (Yuan et al., 2008)
- NLS1 (Osterbrock & Pogge, 1985):
 - Disk-like Host Galaxy -> Spiral?
 - Low Mass SMBH, High Accretion Rate
 - FWHM(Hβ) ≤ 2000 km/s
 - Strong emission from Fe II (Goodrich, 1989)

 Evidence suggests that a subset of this class possess properties similar to those of blazars

J0948+0022: Radio and Gamma-Ray Loud

Image credit: Abdo et al. 2009a

J0948+0022: SED

Image credit: Abdo et al. 2009b

Hypothesis: vRL NLSy1s are blazar-like objects

- Sample of 34 NLSy1s (Yuan et al, 2008) (Komossa et al, 2006)
 - All are radio loud
 - Range of radio loudness
 log(R) = ~1.0 4.0
- Objects should show blazar-like flux and polarization variability.

Hubble image of 1H 0323+342, one of the two closest objects in the sample.

- Rapid Variability of Optical Flux
- Microvariability (discrete, rapid events)
- Optical Polarization
- Gamma Ray LC

J0948+0022: Microvariability

Over 0.9 magnitude variation in less than one hour.

PMN J0948+0022 Flux doubling time = 4.39+/-0.19 hours

PMN J0948+0022

Flux halving time = 3.60+/-0.23 hours

(Small event duration ~1.4 hours)

PMN J0948+0022: Gamma Ray/ Optical Data

Figure 3.1: PMN J0948+0022: multi-wavelenght data

A comparison of all R-band optical data binned at 24-hour intervals (top panel), only optical data obtained with polarimetry (second panel), the Percent Polarization (third panel), position of the electric vector in degrees (fourth panel), and the integrated γ-ray flux (bottom panel) of PMN J0948+0022. Upper limits have been removed for clarity. Details on the photopolarimetric data can be found in Table 3.2. The same horizontal axis is common to all five plots.

PMN J0948+0022: Orphan optical/IR flare??

J0948+0022: Summary

- Extragalactic source
- Double peaked SED
- Radio loud
- Variable Polarization

Image: IRAS 20181-2244

- Detected at gamma-ray energies
- Highly variable on all observed timescales and wavelengths

J0849+5108

Maune, Eggen , Miller et al 2014

Maune, Eggen, Miller,et al., 2014

J0849+5108: SED at various

Figure taken from D'Ammando 2012. Black triangles are new data from Maune et al. (2014)

1H 0323+342

- Paliya et al. (MNRAS, 428, 2450, 2013)
 - Microvariations
- Paliya et al.(ApJ, 789, 143, 2014)
 - Microvariations
 - Rapid gamma-ray variability(3hr /3x-time)

Full Sample

- Microvariations/DC
- Polarization Variations
- Gamma Ray Detection

Figures from Miller and Noble, 19.20

.08

.10 .11 .12 .13 .14 .15 .16 .17 .18 .19

Amplitude (Am) (mog)

.20 >.20

.01 .02 .03 .04 .05 .06 .07 .08 .09

.10 .11 .12 .13 .14 .15 .16

Amplitude (Am)

(mag)

Microvariability: Duty Cycles

	Approximate	Approximate Maximum Amplitudes				
Source Type	Duty Cycle	Microvariability	Long-Term Variability			
Radio Quiet NLSy1s	$4\%^{1}$	$\triangle m \sim 0.05$	$\Delta m \sim 1$			
Radio Quiet Quasars	$10\%^{2}$	$\triangle m \sim 0.10$	$\Delta m \sim 1$			
Radio-Loud Quasars	19% ²	$\triangle m \sim 0.10$	$\triangle m \sim 1$			
HBL and TeV Blazars	$45\%^{2}$	$\triangle m < 0.15$	$\triangle m < 2$			
LBL Blazars	80% ³	$\triangle m > 0.20$	$\triangle m \sim 3$			
(1) (Ferrara 2000)	(2) Carini et al	(2003) (3) Miller	and Noble (1006)			

(1) (Ferrara, 2000), (2) Carini et al. (2003), (3) Miller and Noble (1996)

Polarimetric Results – vRL NLS1 Galaxies

Conclusions

- Some (but not all) radio-loud narrow line Seyfert
 1s show blazar-like optical variability
 - Radio loudness is a poor indicator
 - Gamma-ray detection is likely required for blazar-like variability.
- Microvariability, DC and polarization are consistently LBL-like when detected.

 Jo948+0022 variability suggests that source of optical emission is a extremely compact region.

Sample from Yuan et al.(2008)

Object ID	R.A.	Dec.	Z	log(R)
J0100-0200	01:00:32.22	-02:00.46.00	0.227	1.77
IRAS 01506+2554	01:53:28.262	26:09:39.232	0.326	1.40
1H 0323+342	03:24:41.16	34:10:45.86	0.063	2.50
J0706+3901	07:06:25.12	39:01:51.55	0.086	1.21
J0723+5054	07:23:02.33	50:54:48.00	0.203	1.29
J0744+5149	07:44:02.28	51:49:17.50	0.460	1.62
J0804+3853	08:04:09.240	38:53:48.829	0.211	1.18
J0849+5108	08:49:57.977	51:08:29.023	0.583	3.16
IRAS 09426+1926	09:45:29.22	19:15:48.70	0.284	1.56
PMN J0948+0022	09:48:57.317	00:22:25.511	0.584	2.93
J0956+2515	09:56:49.874	25:15:16.196	0.712	3.56
J1038+4227	10:38:59.582	42:27:42.213	0.220	1.30
J1047+4725	10:47:32.688	47:25:32.010	0.800	4.09
J1102+2239	11:02:23.383	22:39:20.686	0.453	1.28
J1140+4622	11:40:47.897	46:22:04.791	0.115	1.36
J1146+3236	11:46:54.289	32:36:52.384	0.465	2.19
J1227+3214	12:27:49.14	32:14:59.00	0.137	2.16
J1246+0238	12:46:50.20	02:40:16.00	0.091	2.38
J1333+4141	13:33:45.469	41:41:27.656	0.225	1.06
J1358+2658	13:58 45.371	26:58:08.483	0.330	1.11
J1405+2657	14:05:04.803	26:57:27.539	0.713	1.09
J1421+2824	14:21:14.057	28:24:52.899	0.538	2.14
J1435+3132	14:35:09.502	31:31:47.971	0.502	2.98
J1443+4725	14:43:18.558	47:25:56.663	0.703	3.03
PKS 1502+036	15:05:06.477	03:26:30.796	0.411	3.53
RX 16290+4007	16:29:01.306	40:07:59.941	0.272	1.61
J1633+4718	16:33:23.57	47:18:58.83	0.116	2.19
J1644+2619	16:44:42.534	26:19:13.305	0.145	2.73
B3 1702+457	17:03:30.41	45:40:47.08	0.061	2.01
J1709+2348	17:09:07.810	23:48:37.760	0.254	1.06
J1713+3523	17:13:04.462	35:23:33.646	0.083	1.05
IRAS 20181-2244	20:21:04.064	-22:35:25.775	0.185	1.57
J2314+2243	23:14:55.89	22:43:22.69	0.169	1.25

Object ID	R.A.	Dec.	$\log(R)$	Bin $\#$	TS	$\operatorname{Flux}(\operatorname{err})$
1H 0323+342	51.2096	34.143	2.50	53	280.31	36.19(2.73)
J0849+5108	132.492	51.1414	3.16	35	790.76	26.34(2.20)
J0948+0022	147.221	0.349773	2.93	53	402.14	39.81(2.32)
J0956 + 2515	149.208	25.2545	3.56	20	95.95	10.24(2.34)
J1443+4725	220.827	47.4324	3.03	49-53	27.81	1.49(0.06)
PKS 1502 $+036$	226.292	3.40703	3.53	43	36.60	9.58(2.71)
J1644+2619	251.177	26.3204	2.73	46-50	52.25	4.24(1.04)
PKS 2004-447	301.98	-44.579	3.80	13-24	53.77	2.26(0.52)

Object ID	R.A.	Dec.	$\log(R)$	Bin $\#$	TS	$\operatorname{Flux}(\operatorname{err})$
J0100-0200	15.1342	-2.01278	1.77	8	9.65	5.87(0.56)
				25	9.52	3.17(2.23)
J0706 + 3901	106.605	39.031	1.21	23	10.30	0.76(.15)
				66	10.50	1.10(0.36)
J0804 + 3853	121.038	38.8969	1.18	34-36	10.77	8.49(0.15)
J1102 + 2239	165.597	22.6558	1.28	15-20	14.57	1.29(0.81)
J1146 + 3236	176.726	32.6145	2.19	5	12.61	3.58(1.66)
J1246 + 0238	191.709	2.67123	2.38	55-66	17.13	1.58(0.60)
J1713 + 3523	258.269	35.3926	1.05	22	12.03	6.21(0.23)
IRAS 20182-2244	305.268	-22.5884	1.57	9	9.42	2.24(1.89)
J2314 + 2243	348.732	22.7236	1.25	50	11.59	5.05(2.54)

Best Candidate Objects

- Gamma Ray (9<TS<25)
- Optical Variability (including microvariations)
- Strong and Variable Optical Polarization

Best Future Gamma-Ray Candidates

- J0100-0200
- Jo804+3853
- J1102+2239
- J1146+3236
- IRAS 20182-2244
 (Foschini et al.(2016) recently confirmed 1443+47*,1644+26, and 2314+22*)

Who is Alan Marscher?

- Theorist? or Observational Astronomer?
- Teacher? or Administrator?
- Colleague? and Friend?
- All of the above!

HAPPY BIRTHDAY ALAN!!