

Magnetic Dissipation in Relativistic Jets

Yosuke Mizuno

Institute for Theoretical Physics Goethe University Frankfurt

In Black Hole Cam collaboration (Theory Team)

Blazars through Sharp Multi-Frequency Eyes, May 29-June 3 2016, Malaga, Spain

Regions of AGN Jet Propagation

- Jet launching by MHD process => Poynting flux dominated jet with twisted magnetic field
- Need rapid magnetic energy dissipation to make a kinetic energy dominated jet

Dissipation in the Relativistic Jet

Shocks

- Time-dependent energy injection (internal shock)
- Change of external medium spatial structure (recollimation shock)

Magnetic Reconnections

• Magnetic field reversal or deformation of ordered magnetic field

MHD Instabilities & Turbulence

Several instabilities (CD kink & KH) are potentially growth
Turbulence in the jets and/or magnetic reconnection?

CD Kink Instability in Rotating Relativistic Jets: Spatial Properties

Chandra et al. (16)

• In previous study, we follow temporal properties (a few axial wavelengths) of CD kink instability in non-rotating & rotating relativistic jets using periodic box.

• *Here,* we investigate spatial properties of CD kink instability in relativistic jets using non-periodic box.

Initial Condition

- Cylindrical rotating jet established across the computational domain with a helical force-free magnetic field (mostly *sub-Alfvenic speed*)
- Change radial profile: decreasing density (*heavy jet*) or increasing density (*light jet*)
- Put the precession perturbation from jet inlet to break the symmetry to excite instability

3D Helical Structure

 Precession perturbation from jet inlet produces the growth of CD kink instability with helical density distortion.

• Helical kink structure is advected with the axial flow with continuous growth of kink amplitude in non-linear phase.

• Radially decreasing density case (*heavy jet*): helical jet structure is *disrupted* though multiple (axial) mode interaction.

 Radially increasing density case (*light jet*): Growth of kink structure is *saturated* & maintain helically *distorted* structure

Increasing density ($W_0=1$)

Decreasing density ($W_0=1$)

Possible magnetic reconnection in jet

- Calculate local current density (curl B)
- Both cases show localized large values of current at helically distorted region in the jet
- In these sites, magnetic reconnection may be occurred.
- Magnetic reconnection driven by kink instability leads for dissipation of magnetic energy and jet acceleration locally

Decreasing density ($W_0=2$)

Increasing density ($W_0=2$)

Recollimation Shock (Transition region)

Recollimation shock (cont.)

- The dynamics of jet is strongly affected by the difference in pressures between the jet and ambient medium
- If ambient pressure decrease when a jet propagates

gressure mismatch (jet ⇔ ambient)

Multiple recollimation shocks inside the jet

• If a significant rarefaction wave is produced and propagates into the jet interior

Plasma thermal + EM energies are converted into jet kinetic energy

Increasing jet Lorentz factor locally (Aloy-Rezzolla booster)

 In this work, study how magnetic field affect the recollimationshock structure through 2DSRMHD simulations

- Consider 2D non-equilibrium over-pressured jet in cylindrical geometry $(g_j \sim 3)$
- Due to overpressure in the jet, multiple stationary recollimation and rarefaction structures are produced along the jet
- Jet is partially boosted by rarefaction acceleration ($g_i \sim 3 \Rightarrow g_i \sim 5$)
- Jet accelerated region is low density & low gas pressure

Simulation Results (helical field)

- General behavior is similar but more complex (see small sub-structure in jet)
- Structure Looks mixed with the effect of toroidal and axial fields
- Jet is (a little) more boosted than hydro case $(g_j \sim 3 \Rightarrow g_j \sim 5)$

Dependence on B-field strength

• $g_{max}/(g_{max})_{HD}$ -1: relative difference of maximum Lorentz factor with respect to the purely hydro case (B₀=0)

- Acceleration: result of conversion $E_{th} \Rightarrow E_{kin}$ of jet
- Axial case: *larger* Lorentz boost (quadratic dependence of B-field strength)
- Toroidal case: *smaller* Lorentz boost due to magnetic tension
- Helical case: between two extreme (axial and toroidal) but depends on magnetic pitch (=> next slide)

Dependence on magnetic pitch

- Relative difference of the maximum Lorentz factor smoothly joins two extreme cases: toroidal ($P_0 << 1$) and axial ($P_0 >> 1$)
- Transition between two regimes takes place at $P_0 > 1$, that is, when *a*: characteristic radius of helical field (maximum of toroidal field) $> R_i$
- Saturate to the axial field case when $a \sim 10 R_{\rm i}$
- Simple fitting with a hyperbolic tangent function (red-dashed lines)

Jet Formation/Acceleration Region

Jet Formation/Acceleration Region

- Jet formation & acceleration region is possibly seen in mm-VLBI
- What need to reach realistic radiation image of jet formation region?
- 1. Plasma behavior surrounding BH
 - Consider time evolution of accreting matter onto BH and formation of relativistic jets
- 2. Radiation process
 - Consider GR effects (geodesic, redshift), thermal/non-thermal radiation process, optical thickness etc.
- 3. BH spacetime
- Tools: General Relativistic MHD (GRMHD) code + General Relativistic Radiation Transfer (GRRT) code

Development of New GRMHD code

- Developing new 3D AMR-GRMHD code BHAC (Black Hole Accretion Code) in BHCam project
 - Based on SRMHD version of MPIAMRVAC (Keppens et al. 2011)
 - Solving 3+1 form of GRMHD equations (Valencia formulation, axisymmetric static metric)
 - Finite-volume scheme
 - Block-Adapted Mesh Refinement in Cartesian and curvilinear coordinates
 - Fully parallelized by MPI
- GR Hydro is well-tested and working nicely (Meliani et al. 2016, in prep.)
- **GRMHD** (ideal) is in testing phase of magnetized torus
- Simulation results are directly compared with other GRMHD code RAISHIN & HARM2D to verify the code

Summary

- Helical kink structure is advected with jet flow. Advection speed is similar to axial jet flow speed. In observation, we see advection of helically twisted structure.
- The strongly deformed magnetic field via CD kink instability may become a trigger of magnetic reconnection in the jet (= rapid energy dissipation)
- The recollimation shock structure can be modified by the presence of magnetic field, especially helical field yields more complex substructure.
- Newly developed AMR-GRMHD code has reproduced previous accretion torus simulations by other GRMHD codes. We will investigate the AMR ability for complex structure in jet formation site.